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ABSTRACT

The amount of spatial data acquired from crowdsourced platforms,
mobile devices, sensors and cartographic agencies has grown ex-
ponentially over the past few years. Nearly half of the spatial data
available currently are stored and processed through large relational
databases. Due to a lack of generic open source tools, researchers
and analysts often have difficulty in extracting and analyzing large
amounts of spatial data from traditional databases. In order to
overcome this challenge, the most effective way is to perform the
analysis directly in the database, which enables quick retrieval and
visualization of spatial data stored in relational databases. Also,
working in-database reduces the network overhead, as users do not
need to replicate the complete data into their local system. While a
number of spatial analysis libraries are readily available, they do
not work in-database, and typically require additional platform-
specific software. Our goal is to bridge this gap by developing a new
method through an open source software to perform fast and seam-
less spatial analysis without having to store the data in-memory.
We propose a framework implemented in Python, which embeds
geospatial analytics into a spatial database (i.e. IBM DB2 ®). The
framework internally translates the spatial functions written by the
user into SQL queries, which follow the standards of Open Geospa-
tial Consortium (OGC) and can operate on single as well as multiple
geometries. We then demonstrate how to combine the results of
spatial operations with visualization methods such as choropleth
maps within Jupyter notebooks. Finally, we elaborate upon the
benefits of our approach via a real-world use case, in which we
analyze crime hotspots in New York City using the in-database
spatial functions.
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1 INTRODUCTION
1.1 Motivation

Modern day technologies like mobile devices, social media net-
works, fitness apps [2] and rideshare platforms [8] have enabled
seamless collection of georeferenced location data about human
movement. Storage, analysis and management of spatial data re-
quires identifying spatial objects as geometric data types. Databases
storing spatial data provide an additional functionality to process
geometric data types efficiently, with the help of spatial functions
for computing spatial measurements such as distance, buffer etc.
Managing dense spatial-temporal information, from location-based
applications, in terms of storage and retrieval for analytics, is often a
major challenge faced by organizations, due to the data complexity
[19]. Efficient mechanisms for retrieving information from spatial
databases [9] to generate meaningful maps has become a necessity
for analysts, urban planners and geographers in general.

The natural choice for developers using geographic data has been
to store the data in the form of geometric data types in databases
with a spatial extender such as PostGIS [28] or IBM DB2® Spatial
as per the Open Geospatial Consortium SQL Specification Guide-
lines [7]. Spatial analysts exploit this data to build maps, graphs,
statistical models, and cartograms, making complex spatial relation-
ships understandable through interpretable visualizations. Such
representations of data can reveal historical shifts, as well as detect
current and future patterns in time. Geospatial analytics can help
organizations anticipate and prepare for possible changes due to
changing spatial conditions or location-based events [27]. It forms
the basis of many decision making efforts including risk manage-
ment, urban planning, crime detection - to name a few — and helps
decision makers better understand the geographical aspects that
influence broader trends and may have future consequences.

With in-database approaches, parts of the analytic logic are exe-
cuted within a data warehouse, which allows faster data processing.
It also helps to transform data and move it back and forth between
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the database and remote analytics applications. From one system
to another, the availability of in-database analytic capabilities may
vary. Typically, in-database analytic is enabled through a set of
libraries and user-defined functions, such that they can:

o Access the data in the database, data warehouse or appliance
in-situ, without needing to extract it to some interim format.
e Use the hardware, parallel processing capabilities and load
balancing/processor management of the data infrastructure.
o Be accessed both from specialist analytic tools, e.g., for model
creation or data quality tasks, and from operational systems.

Previous studies [15, 18, 26] have focused on in-database ana-
lytics for numeric data. To the best of our knowledge, spatial data,
which are structurally complex and multivariate in nature, have not
been accounted for so far. The open source crowdsourced mapping
platform, OpenStreetMap (OSM) [5], with more than 4.3 million
users, accelerates the generation of massive spatial information
from community users and currently stores more than 6.3 billion
geographic coordinates in its database. Similarly, social media data
sources such as Twitter, generates an average of over 500 million
geolocated tweets daily, and the volume of tweets is growing at a
rate of nearly 30% each year. Making sense of such huge volumes of
raw data is a critical challenge. Owing to its complexity, volume and
multivariate nature, spatial data are often computation-intensive
and require streamlined tools for better analysis. The integration of
spatial data sets relies on spatial queries of different types, which
we will address in this paper. These queries can be broken down
into the following categories:

e Contain/Within queries: For a given geolocation, a user
might want to find the containing polygon or multi-polygon.
The cardinality may vary based on the number of use cases.
For instance, while exploring Twitter data, we may want to
determine the business unit in which a tweet author was
located using OpenStreetMap, where both the number of
points and the number of business unit objects are huge. As
another example, a user might want to identify only tweet
authors who were in airports, where the amount of accurate
geometry shapes could be limited.

e Buffer queries: In reality,the accuracy of GPS data depends
on several factors, such as the quality of the GPS receiver, the
actual position of satellites, the surroundings. Thus, several
meters of horizontal inaccuracy is very common. In such
cases, computing the buffer of a geographic location as a
polygon would make more sense, and using a containment
query between polygon helps in getting around the problem.

o Length/Area queries: These queries help to calculate area,
perimeter or length of polygon objects representing entities
like counties, states, census block groups, lakes or streets.
They are useful to analysts in order to infer the density of a
given geographic entities.

¢ Distance queries: Often, researchers are interested in prox-
imity calculations when they consider a geometry with re-
spect to its context. For example, they might be interested
in knowing how far is the nearest bus stop from a house? or
which is the closest park in the neighborhood? The answer
to these questions are mostly distance calculations - both
straight line as well as geodesic.

e Network Topology queries: Some spatial databases (Eg:
pgRouting in PostGIS) give users the ability to run pathfind-
ing queries on tables of links. The topology support allows
to create edges and faces from existing, non-network aware
polygons and polylines. Creating topologies, computing short-
est distance and calculating costs are some of the typical
operations often used as queries in a spatial network.

Also, the large volume of the dataset in a single instance of a
spatial table can be a hindrance, in term of loading the entire dataset
in-memory and thereby reduce operational efficiency. Last but not
the least, data manipulation and mining often is an interactive pro-
cess [11], where short response times are preferred across multiple
platforms and tools in an integrative framework. As a result, one
often resorts to the extraction of small samples, or transfers the
data to a cluster system for further processing [18]. However, sam-
ples may be unrepresentative of the real data distribution - when
it comes to distance calculations or performing spatial joins. Dis-
tributed computing and use of high performance machine in turn
gives way to high infrastructure expenses. Therefore, the need for
the adoption of in-database capabilities have eventually grown.

1.2 Current Challenges

Depending upon the size of the study area (e.g., neighborhood,
city, states, countries, etc.), spatial queries typically involve huge
amounts of complex spatial objects (points, polygons and multi-
polygons); they are are both highly data- and computation-intensive.

Spatial analytics problems usually involve combining spatial
data with relational data from external sources to establish spatial
relationships and hypothesize spatial patterns, e.g., determining
the location of possible markets. One of the main challenges is that
spatial analytics data typically is heterogeneous. Also, there are
currently not many open-source and easy-to-use tools available
for in-database analytics using spatial data. In-database geospatial
analytics combines spatial data with other relational data from
disparate sources to establish spatial relationships and hypothesize
spatial patterns. It can help users with activities such as defining
the areas in which you provide services, and determining locations
of possible markets. The challenge here is that the data sources one
is actually interested in are heterogeneous.

Traditionally, spatial analysis relies on proprietary GIS (Geo-
graphic Information System) tools [1], and there is a lack of tools
dedicated to spatial analysis developed on standard open source
platform, such as Python [6]. Also, existing GIS tools often are
unable cope with the large volumes and complexity of the datasets
involved in real-life spatial decision-making problems [10] which
requires handling large datasets. To summarize, the complexity
and heterogeneity of spatial analytics, as well as the lack of non-
proprietary tools, motivates the development of open source spatial
in-database frameworks.

1.3 Contributions & Paper Outline

We use a functional approach to solve those challenges using a
Python based software package for performing fast and seamless
spatial analysis without having to store the data in-memory. Our
contribution is two-fold:



e We propose an extension of the ibmdbpy [18] framework
called ibmdbpy-spatial. Our extended framework represents
spatial data as geometries as a special attribute in a dataframe
and enables spatial analysis via associated wrapper functions,
which work by seamlessly pushing spatial queries as SQL
operations into the database.

e We demonstrate the applicability and value of our framework
via a case study, in which we analyze crime hotspots in New
York City.

The remainder of the paper is organized as follows: Section 2 is
the related work. Section 3 explains the principles of the ibmdbpy-
spatial framework. Section 4 highlights the results of our case study.
Section 6 is our conclusion.

2 RELATED WORK

A few interfaces for in-database analytics exists, e.g., the Blaze
ecosystem [20]. Blaze provides an interface for multiple backends,
(eg: SQL databases, NoSQL data stores, Spark, Hive, Impala, and raw
data files), which simultaneously is a drawback, since this reduces
the available functions to the common subset. Previous studies have
looked at performing in-database learning from sparse tensors [26]
but do not support spatial analysis. Simba [35] introduced a frame-
work to perform geospatial analytics using a distributed database
approach through Spark, with additional dependency on Java and
Scala, i.e., users need prior knowledge of multiple languages to
seamlessly integrate logical programming codes along with spa-
tial queries in a single platform. PySAL [29] provides an analytics
platform for geospatial data, but does not leverage database tech-
nology. The ibmdbpy framework [18] was proposed as a solution
for in-database analytics for numeric data within IBM DB2 ® and
paved the way for the spatial analysis framework that we present
in the following sections of this paper.

3 OVERVIEW OF IBMDBPY-SPATIAL

In-database analytics operations usually encapsulate complex SQL
statements into functions of a data analysis framework like Pandas
[25], using Python. These SQL statements are eventually trans-
lated to database queries at runtime, as so-called “SQL-pushdowns’,
whose results are retrieved as a data structure into local memory,
typically in the form of a so-called “dataframe”. A dataframe repre-
sents data in standard vector format, i.e., it is easy to manipulate
and foster further exploratory analysis.

SQL-pushdowns reduce execution time for reading data and run-
ning complex queries on the data, compared to fetching the entire
dataset into memory, which might lead to much network overhead.
To demonstrate our approach, we use IBM DB2, which is available
via a free entry plan on the IBM Bluemix® platform. Ibmdbpy-
spatial wraps around the IBM DB2 database spatial extender, which
supports multiple types of spatial queries through customizable
spatial query engine, multi-level indexing, implicit parallel spatial
query execution, and effective methods for amending query results
through handling boundary objects.

3.1 In-database Analytics

The preliminary step of most data analysis applications is to first
extract the data stored in a relational database. The process of data
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SELECT *, DB2GSE.ST_AREA(SHAPE)

FROM GEO_COUNTY
(Spatial Query with Area function)

& python’

+ ibmdbpy-spatial

'GEO_COUNTY'
(Spatial Table)

>>idadb = IdaDataBase('DASHDB")
>>gdf = IdaGeoDataFrame(idadb, '‘GEO_COUNTY")
>>gdf['area’] = gdf.area(colx = 'SHAPE')

Figure 1: Framework for ibmdbpy-spatial

extraction is often a challenge for analysts and end users for several
reasons: The complexity of data can be very high (e.g., spatial data),
and the data representation is of varied types (e.g., point, polygon,
numeric, string etc.).

In-database analytics means that analytic capabilities are embed-
ded directly in a relational/columnar database or a data warehouse
software. These capabilities are specific to a particular database,
data warehouse or a data appliance of a specific kind. In-database
analytics operations usually translates complex SQL statements
into a single function. For end users who are not efficient in query
processing, this analytical approach seems like a reasonable alter-
native. The database queries are translated as SQL-pushdowns at
runtime and the result is retrieved as a memory instance in the form
of dataframes, which are easy to manipulate for further exploratory
analysis and visualization.

Such an approach reduces overall data retrieval time thereby
reducing the network overhead involved in running complex spatial
queries on the entire dataset in-memory, often resulting in the
working platform to crash midway.

3.2 In-database Analytics with Spatial Data

The idea of in-database geospatial analytics is to translate com-
plex spatial queries into easy-to-use functions, represented in a
standard programming language (E.g.: Python, R etc). In our study
we develop a software package “ibmdbpy-spatial” using Python to
implement this feature. We choose Python as our choice of pro-
gramming language owing to its large user base and open source



nature and purpose of reproducibility. The package we develop in-
ternally uses database wrapper functions to translate spatial queries
into well known Pandas [25] like syntax. Ibmdbpy-spatial, wraps
standard OGC specific spatial queries and generates their Python
equivalent. It uses a middleware API (pypyodbc/JayDeBeApi) to
send the queries to an ODBC or JDBC-connected database for ex-
ecution as shown in the workflow in Figure 1 . The results are
fetched and formatted into the well-known dataframe format in an
open source framework in Python . Typically, spatial data used for
building the ibmdbpy-spatial library can be categorized into 3 main
spatial objects: points, lines and polygons. We show the topological
framework that underlies spatial operations for ibmdbpy-spatial
in Figure 2. The ibmdbpy-spatial framework allows remote spatial
operations within databases by wrapping database-specific spatial
operations as user-friendly Python functions with a simple syntax.
Additionally, it benefits from the performance-enhancing features
of in-database processing, such as columnar storage and parallel
query processing.

For example, let us assume there is a table containing trajectory
of a storm and we want to find the length of the trajectory of the
storm. In this case, the user is using a data analysis tool like Python
to perform such operations, and would do the following:

1 # Connect to the database

2 >>> idadb = IdaDataBase('DASHDB")

5 # Load the data as a dataframe

4+ >>> df = IdaGeoDataFrame(idadb,

5 "SAMPLES.GEO_TORNADO' ,geometry = 'SHAPE')

¢ # Get the length of trajectory via geospatial method
7 >>> df.length(unit = 'KILOMETER")

The above operations are translated into a SQL query as follows:

1 SELECT DB2GSE.ST_Length(SHAPE)
2 FROM SAMPLES.GEO_TORNADO;

geometry
point curve surface
linestring polygon
geometry collection
|
v ¥ ¥
multipoint multilinestring multipolygon

Figure 2: Topological framework of spatial data used in
ibmdbpy-spatial

1Disclaimer: IBM, the IBM logo, ibm.com, DB2, dashDB and Bluemix are trademarks or
registered trademarks of International Business Machines Corporation in the United
States, other countries, or both. A current list of IBM trademarks is available on the
Web at http://www.ibm.com/legal/copytrade.shtml. Other company, product, or service
names may be trademarks or service marks of others.
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Figure 3: Spatial functions design workflow

The first step is to set up an ODBC/JDBC connection with the
DB2 database. The spatial data is then identified by ibmdbpy-spatial
as a special class called IdaGeoDataFrame that extends all the prop-
erties of a data frame with additional methods for geospatial data
types like ST_Point, ST_LineString, ST Polygon etc.

An IdaGeoDataFrame is a reference to a spatial table in a remote
instance of the connected database. The IdaGeoDataFrame object
references spatial data by means of the "geometry" attribute, which
is a special column in the table with spatial data. When a spatial
method is applied to an IdaGeoDataFrame (or a spatial attribute
like area is called), these commands will always act on the "geome-
try" attribute. The geometries are represented as well-known-text
(WKT) in Python.

Topological operations on geometric features is the most impor-
tant functionality required to analyse customer data and derive
meaningful relationships from the raw data. Certain spatial func-
tions return information about ways in which geographic features
relate to one another or compare with one another. Other spatial
functions return information as to whether two definitions of coor-
dinate systems or two spatial reference systems are the same. In all
cases, the information returned is a result of a comparison between
geometries, between definitions of coordinate systems, or between
spatial reference systems. Some of the common topological oper-
ations, available as stored functions inside ibmdbpy-spatial are -
AREA(), WITHIN(), DISTANCE(), BUFFER(), INTERSECT() to name a few.
More functions shown in Figure 3 are available and can be found
in the ibmdbpy-spatial documentation.
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Each method is a Python wrapper which internally triggers a
stored procedure from the spatial database which then translates
into a dataframe in Python. The geospatial methods can operate
on a single geometry or multiple geometries and each of the two
behaviour is configured using a Handler method in Python which
interprets the type of method being executed from the type of
arguments passed.

Let us take an example to understand how the spatial functions
work. We have two IdaGeoDataFrames for Customer and Counties
of North America. We would like to find those customers with a
high insurance value above $250000 and residing in the county of
Austin. First, we begin by reading all the data for US counties and
assign a geometry attribute to the IdaGeoDataFrame.

1 # Read a database table as an IdaGeoDataFrame
2 >>> idageodf1 = IdaGeoDataFrame(idadb,

3 'SAMPLES.GEO_COUNTY', indexer="'0OBJECTID")

4+ # Select the geometry attribute
s >>> idageodf1.set_geometry('SHAPE")

Now, we select the counties which are in Austin, TX.

1 # Choose the counties in Austin
2 >>> idageodf1 = idageodf[idageodf['NAME']=="'Austin']]

Following this step, we then choose all customers with an insur-
ance value above $250,000 from the customers IdaGeoDataFrame.

1 # Select all customers data

2 >>> idageodf2 = IdaGeoDataFrame(idadb,

3 'SAMPLES.GEO_CUSTOMER',

4 indexer="'0BJECTID"')

s # Set the geometry attribute

¢ >>> idageodf2.set_geometry('SHAPE")

7 # Select customers with insurance value > $250,000
s >>> idageodf2 = idageodf[idageodf

9 [ " INSURANCE_VALUE ' 1>250000]

Now that we have all the information about the customer an
counties, we will try to find all those customer who reside in Austin
and have an insurance value above $250,000. For the spatial query
we need to use the wiTHIN() function as shown in Algorithm 1 from
ibmdbpy-spatial which will filter out all geometries corresponding
to the customer locations that lie within polygons representing the
counties in Austin, TX.

Internally, ibmdbpy uses objects with spatial methods as Geopan-
das objects, such as the well-known GeoDataFrame, but in fact, the
data lies in a distant database. Invoking a method actually leads
to the construction of a string that should be a valid spatial data-
base query. Apart from the connectivity layer, ibmdbpy-spatial
works independently from the underlying database system, since it
generates standard OGC specific spatial queries.

The scripts can be used in an interactive framework with Jupyter
notebooks [23], a web application as shown in Figure 5 for creating
and sharing documents, containing live code, visualizations and
explanatory text, which makes the spatial analysis interactive and
independent of additional software installations. Once we have the
result GeoDataFrame, we can just filter out a single customer using

Algorithm 1 Algorithm for within query in ibmdbpy-spatial

Require: Table tabl with polygon and tab2 with points
Ensure: Query to find points within each polygon in tab

1: function WiTHIN(tab)

2 geom1 «— get_geometry(tabl)

3 geom2 «— get_geometry(tab2)

4 tabnamel « get_name(tabl)

5 tabname2 «— get_name(tab2)

6 for p1,p2 « geometries(geom1,geom?2) do
7 string « string + p2.ST_WITHIN(p1)
within « string join with "'

9: select « "SELECT"

10: from < CONCATENATE(" FROM ",tab
11: return CONCATENATE(select,within, from)

=3

the matched index to find his/her location and insurance value
associated with him/her.

The results can be further used to visualize data and combine
with other statistical operations available through the Pandas [25]
data analysis library in Python. The Jupyter notebooks of our
case study and spatial functions implementation can be found on
GitHub?.

#Select the customer locations within

2 #each county in Austin
3 >>> result = idageodf2.within(idageodf1)

s #The indexes of both dataframes are shown
¢ #RESULT = 1 indicates whether or not

7 #the customer resides in Austin

s >>> result[result['RESULT'J==1].head()

s> INDEXERIDA1 INDEXERIDA2 RESULT
10 69879 2 1
1 69934 2 1
12 69965 2 1
13 256660 2 1
14 256682 2 1

16 >>> idageodf2[idageodf2['ID'1==69879].head()
17 ID NAME INSURANCE_VALUE
18 69879 Angie Baumgardner 263388

4 CASE STUDY USING IBMDBPY-SPATIAL:
MAPPING CRIME DENSITY IN NEW YORK
CITY

4.1 Using in-database spatial function to
calculate crime density

The New York city police department has gathered a huge amount
of data over a period of 10 years and more and categorized the 7
major felonies committed in the city of New York. We can analyze

Zhttps://github.com/ibmdbanalytics/ibmdbpy
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this huge dataset [13] with efficient geospatial analytics tools using
ibmdbpy-spatial to gain meaningful insights from the data.

The data contained 2.5 million records which were first loaded
into the spatial database. The ibmdbpy-spatial package was then
used to extract crime data for each borough. We used the within()
function from the ibmdbpy-spatial package to calculate crime lo-
cations within each borough. The wiTHIN() function on the en-
tire database took less than 0.25s to run the query for the entire
dataset, which is extremely low compared to the time taken to run
in-memory spatial queries from standard geospatial libraries like
Geopandas [14], which runs for nearly 2 s on a dual core machine
with 64 GB RAM and 2.6Ghz processor. For the purpose of crime
analysis in New York city we followed the algorithm shown in
Algorithm 2.

Algorithm 2 Algorithm for computing area in ibmdbpy-spatial

Require: Table tab with spatial data
Ensure: Query for area of each polygon in tab

1: function ARgA(tab)

2 geom « get_geometry(tab)

3 tabname «— get_name(tab)

4 for p1 « geometries(geon) do

5 string « string + ST_AREA(p1)

area « string join with "'

select « "SELECT"

from < CONCATENATE(" FROM ", tab
return CONCATENATE(select,area, f rom)

Y ® N

Staten Island

Manhattan

Boroughs

Brooklyn

1000 2000 3000 4000 5000 6000

Number of Robberies

Figure 4: Overall distribution of robberies in New York city

We filtered the crimes by their type to extract the density of
robberies occurring in each borough. Figure 4 show the number of
crimes between 2010-2017 in each borough. We first read the spatial
data as IdaGeoDataFrames and set their geometry attributes.

1 >>> nyc_gdf = IdaGeoDataFrame(idadb, 'NYC_BOROUGHS',

2 indexer="'0BJECTID")
3 >>> nyc_gdf.set_geometry('SHAPE")

4 >>> nyc_crime_gdf = IdaGeoDataFrame(idadb,
s '"NYC_CRIMES',indexer='0OBJECTID')
¢ >>> nyc_crime_gdf.set_geometry('SHAPE")

import getpass,jaydebeapi, jpype

uid = raw_input('Enter Username:')

pwd = getpass.getpass('Enter password:')

jdbe = jdbc_link + ':user=' + uid + ';password='
+ uid + ';password=' + pwd

idadb = IdaDataBase(dsn = jdbc)
print('Connection to dashDB successful!')

Enter Username:dash5548

Connection to dashDB successfull

# Read the data from dahsDB using ibmdbpy

import ibmdbpy

from ibmdbpy import IdaDataBase,IdaDataFrame,IdaGeoDataFrame,IdaGeoSeries
boros = IdaGeoDataFrame(idadb, 'NYC_BOROUGHS',indexer = 'OBJECTID')
felonies = IdaGeoDataFrame(idadb, 'NYC_CRIME_DATA',indexer = 'OBJECTID')
#Set the geometry attribute and calculate area of the boroughs
boros.set_geometry('GEO_DATA')

felonies.set_geometry('GEO_DATA')

boros['area_in_sq_km'] = boros.area(unit = 'KILOMETER')

boros.head()

OBJECTID | BoroName AREA_IN_SQ_KM
01 Staten Island 150.856763
12 Queens 282.911619
2(3 Brooklyn 179.997796
34 Manhattan 59.130826
4|5 Bronx 110.270598

Figure 5: Jupyter notebook executing ibmdbpy-spatial func-
tions in Python

4.2 Results: Mapping crime density in New
York city

Once the geometries were assigned we used a density calculation
by counting the total number of robberies within each borough
and dividing it by the area of the respective boroughs. We used the
wiITHIN() and AREA() functions to calculate the crime density per
borough.

1 >>> manhattan = nyc_gdf[nyc_gdf["NAME"]=="Manhattan']
» >>> area = manhattan.area()

3 >>> manhattan_crimes = nyc_crime_gdf.within(manhattan)
¢« >>> counts = manhattan_crimes.query('RESULT==1")

s >>> density = counts/area

We then visualized the results on a map using additional Python
libraries matplotlib and folium using the outcomes from Figure 5
and using the following code.

We use a choropleth map to plot crime densities by each borough
in New York city. We show the relative density or amount of crime
occurring in different areas in Figure 6. The thematic shading by
each borough from light to dark green indicates the crime density
index shown at the top of the map as a continuous scale ranging
from 0 to 0.5. Since the spatial aggregations of crimes were quite
large it is not clear enough to distinguish much spatial dependency.
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Figure 6: Map of crime density in New York city
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Figure 7: Crime density estimation with equal resources

But clearly the northern most boroughs are much more crime prone
compared to the southern part of the city.

We also compared the performance of spatial queries by increas-
ing the volume of data as shown in Figurre 7, randomly sampled
from the original dataset. We assessed the scalability using a Jupyter
notebook running on a 64-bits operating Windows 10 operating
system. The machine contains 16 GB RAM and a Intel Xeon pro-
cessor at 2.60 GHz. We use Python version 3.7. By the time of the
experiments, the version 0.1.0 of ibmdbpy is installed. We connect
to a distant database using JDBC. The distant database is an IBM
dashDB enterprise instance, hosted on IBM Bluemix® cloud plat-
form.

4.3 Discussion

The importance of crime data analysis has played an important role
in public safety and planning smart cities [22]. Areas of concen-
trated crime activity are often referred to as hot spots. Hotspots
have been defined by previous researchers in the literature in terms
of hot spot addresses [16, 32], as well as hot spot blocks [33, 34],
some also examine clusters of blocks [12]. Crime analysts often
look at hotspots to identify concentrations of individual events that
might indicate a series of related crimes and try to link these to
underlying social conditions. The results shown in Figure 6 clearly
indicate the spatial distribution of robberies in New York city. We
found that the highest crime density is in Brooklyn and the lowest

crime density is in Staten Island. Although the size of the boroughs
have a direct impact on the density of crimes, we can also see in
Figure 4 that the overall frequency of crimes in these boroughs
match up. The entire analysis was performed in Jupyter notebook
without any prior database installation. We found that it is efficient
to process large datasets with more than 2.5 million rows using
ibmdbpy-spatial and the results can be visualized on the fly using
simple Python scripts. This relieves the user from additional hur-
dles of multiple software installations for spatial analysis or the
need for additional GIS software tools that are commonly used
for visualizing maps. We also found that the challenges in using
in-memory tools where the network overload might slow down
data analysis in case of large spatial operations, ibmdbpy-spatial
was able to overcome those. Our study introduces a new method for
the exploratory analysis of spatio-temporal data in an efficient and
fast manner with the help of the Python package ibmdbpy [17]. The
primary and most interesting outcome of our study was applying
in-database analytics approach to geolocated crime data stored in a
traditional enterprise data warehouse, IBM DB2, in this case.

5 CONCLUSION

Crime analytics [24] is a major part of a building a smart cities. With
growing availability of IoT (Internet-of-Things) devices [21], it is
possible to gather real-time data about crimes in and around a spe-
cific neighborhood, which help in developing a smart city approach.
The data processing complexity, which is usually a hindrance in
such analyses, can be easily handled by the in-database geospa-
tial analytics approach in ibmdbpy-spatial [30]. The results can
be further combined with other forms of data sources from social
media platforms to extract more information about crime locations,
improve vulnerable areas and thereby build a safer community [31].

Users can also visualise the results in a more meaningful fashion
with additional Python libraries like matplotlib[4] and folium[3].
We develop a scalable andeasy-to-use framework for in -database
analytics using spatial data in this study. Policymakers and local
authorities can use this framework to identify areas of high or
low crime rates and further investigate socio-economic and demo-
graphic characteristics of those neighborhoods which might con-
tribute to a visible high crime density location. “ibmdbpy-spatial”,
is a first step towards promoting a more structured investigation
on the relationship between crime rates and overall quality of life
via crowdsourced data and thereby help create safer communities.

6 FUTURE WORK

In the next phase of the work, we would introduce additional ca-
pabilities within ibmdbpy-spatial to identify k-nearest neighbors
and k-means clustering to understand the spatial effects of crime
distribution in the study area. The detailed analysis could also help
explore if there are any social underpinnings as to why the crime
densities vary over space.
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