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Abstract. Brownian motion is widely used to model random processes
across various domains. However, many practical scenarios only provide
aggregated data over time intervals, rather than direct measurements
of the underlying process. This poses significant challenges for accurate
modeling, as conventional Brownian kernels are not designed to account
for the uncertainty introduced by these aggregates. We introduce the
Brownian integral kernel (BIK), the first analytical kernel specifically
developed to model aggregated data from Brownian motion. Through
extensive experiments on synthetic and real-world datasets, we demon-
strate the BIK’s superiority in prediction accuracy, uncertainty estima-
tion, and data synthesis compared to existing Kernels. To support adop-
tion, we provide a Python implementatiorﬂ compatible with GPy, along
with all code and data to reproduce our experiments.

Keywords: Integral Measurements- Learning from Aggregated Data-
Integrated Brownian Motion- Gaussian Process Regression- Kernels

1 Introduction

Brownian motion (Figure [lp) is central to modeling various physical and tech-
nological processes, such as: (1) The movement of particles in a fluid [7]. (2)
The movement and loosening of machine elements due to vibration [13]. (3) The
behavior of financial and other markets [17], population behavior and effects. (4)
The load profile of electrical grids where producers and consumers with vary-
ing loads are plugged in or out of the grid at any time. These processes often
involve stochastic uncertainties, which are effectively modeled using Gaussian
processes and Brownian kernels [4], enabling synthesis of process data, regres-
sion of real-world data with associated uncertainty, and the combination of both,
i.e., synthesis of data from partially conditioned models.

However, in many real-world scenarios, data collection pipelines contain “in-
tegrators” that implicitly or explicitly aggregate data over time intervals [19]

3 git: https://github.com/belal27/Brownian-Integral-Kernel
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(Figure [Lp). Direct observation of the quantity of interest is not possible in such
scenarios. Examples include sensors with inherent integration properties (e.g.,
temperature sensors with heat capacity) or practical constraints (e.g., smart
meters providing 15-minute aggregated load data for value privacy). This aggre-
gation obscures the underlying behavior and increases uncertainty, which con-
ventional Brownian kernels cannot model accurately (Figure ) For instance,
load forecasting requires precise variance estimation to manage short-term peaks
in energy consumption [8,18,28]. Without this, providers risk grid instability or
legal penalties due to insufficient capacity [3|. Similar problems arise in other
domains like disease monitoring and simulation [34]. As emphasized by [5], the
importance of integral kernels for modeling integrating processes is undisputed
in many fields.
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Fig. 1. Comparison of modelling and synthesis of integrated Brownian data with the
conventional Brownian Kernel (BK) and our Brownian Integral Kernel (BIK).

While a few integral kernels exist (e.g., RBF Integral Kernel), they are of-
ten computationally expensive or lack a direct connection to physical processes,
making them unsuitable for integrated Brownian motion.

To address these challenges, we derive the Brownian Integral Kernel (BIK), a
novel analytical solution for modeling aggregated data from Brownian motions.
The BIK accurately estimates variance and supports Gaussian process regres-
sion, enabling better predictions and uncertainty quantification (Figure [1 ) as
well as data synthesis (Figure|l ) We validate its performance through extensive
experiments on synthetic and real-world datasets. Further, to foster accessibil-
ity, we provide a Python implementation of the BIK compatible with the widely
used [9] framework for Gaussian Process modeling. For brevity of this paper, we
provide proofs, theoretical findings, and additional experiments in our extensive
Supplementary material.
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2 Related Work

Gaussian processes (GPs) are a standard tool for modeling continuous processes,
offering flexible kernels that enable accurate regression, uncertainty quantifica-
tion, and data generation [4]. Their robustness to overfitting and scalability make
them well-suited for both small and large datasets [6]. A key strength of GPs
is their use of kernel functions, which allow for modeling complex, non-linear
relationships without explicit parametric assumptions. The general workflow for
using GPs is outlined in Algorithm [T}

Algorithm 1 Generic Use-Case of a Gaussian Processes

1: Input: Training data tirain, Ytrain, 1est data tiest

2: Qutput: Predicted mean p(tiest), uncertainty o(tiest), generated data ygen

3: Step 1: Kernel Selection. Choose a kernel function k(-,-) (e.g., RBF, Matérn,
our BIK, etc., or combination).

4: Step 2: Training. Train the Gaussian process model on tirain, Ytrain using the
kernel k(+, ). Learn hyperparameters 6 of the kernel by maximizing the log marginal
likelihood.

5: Step 3: Prediction and Uncertainty Estimation. For test points tiess, com-
pute the posterior mean p(ttest) and variance o2 (ttest) using the trained model.

6: Step 4: Data Generation from Posterior Distribution. Sample from the
posterior A (pu(teest), 02 (trest)) to generate new data ygeen.

Despite their strengths, conventional kernels face limitations when modeling
aggregated data. The RBF Integral Kernel [5,29] lacks physical grounding, while
numeric integration-based methods [20,33] and MCMC approximations [34] are
computationally expensive. Spectral approximations [10,30] succeed for smooth
kernels but fail for discontinuous ones like the Brownian kernel [22].

The Brownian kernel, in contrast, is closely tied to physical processes such
as load profiles and market behavior. However, it assumes direct observations,
limiting its utility for aggregated data. Efforts to adapt Kalman filters [12,15,24,
25,31,32,35,36] and integrate numeric methods [16,20] have resulted in problem-
specific or approximate solutions. For more details, see the extended related work
in Supp.Mat.

Some approaches are out of scope for this work. Time-discrete methods, such
as Kalman filters, lack the continuous modeling required for integrated data,
while extensions for time-continuous modeling [15, 32] require problem-specific
transition functions. Methods like Support Vector Machines (SVMs) do not sup-
port uncertainty estimation, and neural networks lack efficient mechanisms for
data generation and uncertainty quantification. These limitations make them
unsuitable as baselines for this study.

This paper introduces the Brownian Integral Kernel (BIK), an analytical so-
lution for modeling aggregated data. The BIK directly relates to common phys-
ical processes and provides exact covariance estimation for integrated Brownian



4 B.H. Bohnke et al.

motion, enabling efficient computation within standard GP frameworks while
maintaining a direct connection to physical processes.

3 Problem Statement

For clarity and completeness, the detailed notation and fundamental definitions
are provided in Supp.Mat. [Il Although the notation is designed to be intuitive
and should become clear from the context, readers are encouraged to refer to
Supp.Mat. [T as needed for additional details.

We assume a data-generating process B(t) that behaves like a Brownian
motion. Some real processes that behave like this do not allow observation of
their actual value b(t) (realization) at time ¢. One can only observe average or
integral measurements of B(t), while the true value b(¢) remains unknown.

Definition 1. An integral measurement B(s,e) is the integration over time t of
measurements from b(t) from start time s to end time e:

B(s,e) = /e b(t)ot.

Even if b(t) follows a Brownian motion which is per definition erratic, integral
measurements B(s,e) behave differently, this is because integration smoothes
the values leading to a smoother function. In consequence the measured value
B(s,e) is most certainly not the true value of the underlying process b(t). How-
ever, a Brownian motion model, e.g., a Gaussian process with Brownian kernel
kg (t,t') = vy - min(t,t’) assumes that the observed data points are the true
values. Fitting such a model on integral measurement B(s,e) gives the wrong
predictive variance of zero at measurement locations. To obtain the correct co-
variance, i.e., to correctly model the additional variance due to integration, a
new kernel is necessary.

4 The Brownian Integral Kernel

We propose to model the additional variance (described in the previous section)
directly in a new kernel to solve the problem of mis-estimating the variance.
Thus, this calls for a kernel that yields the covariance between two integrated
time intervals of a Brownian motion. Following [5] we can derive this kernel by
integrating the Brownian kernel:

Definition 2. The Brownian integral kernel (BIK) is the two-time integration
over time intervals (s,e) and (s',¢e') of the Brownian kernel:

kff’((sae),(8,7€/))=11b-/ /mz‘n(t,t’)étét’.
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This kernel generalizes the Brownian kernel to integral measurements by
modeling the higher variance due to integration, which the Brownian kernel
neglects. For intuition and proof of how integrating a kernel is equivalent to
integrating the underlying process, please refer to Supp.Mat. [3] Further, a kernel
needs to fulfill some properties, namely, it needs to be positive-semidefinite [26].
We provide proof for this property in Supp.Mat. [

Theorem 1. The Brownian integral kernel admits the following solution:

krr((s,e), (s €)) =
ifs<s <ée <e:

Fu((et),(s",€) + Foor(s', ) + Fowr((s,8), (s, €))
ifs’ <e <s<e:

Fee((s,€), (s',€))
ifs <s<eée <e:

Fuu((s,€), (5", 8)) + Fu((€', €), (5,€")) + Feor (s, 1)
ifs<s <e<e:

Fov((s,s),(s',€)) + Fuu((s'€), (e, €)) + Fuur (s, ¢)
ifs<e<s <eé:

Fuv((s,e), (s's¢))
ifs'§s<e§e/:

Fee((s,€), (s',8)) + Fuar (s,€) + Frr((5,€), (e, €”))

Vp

, with Fyp, Fy, Fre being sub-parts of the primitive function:

ro _1 2 ’r_ 1 2 g 1 2 / 1 2 gy
ftt((l,u)7(l7u))—2u w = gu l 21 u +21 U, (1)
Foo (', 0, (L)) zlul2 Su— ll/2 cu— 1u'2 I+ El'2 -1, and (2)

t't ) s \by 2 2 2 2 ’
For(lw) =2 (u = 1)* + (u—1)2-1. 3)

3

We provide a detailed proof of this derivation in Supp.Mat. [8]
The resulting kernel kxz calculates the covariance between training data
intervals, i.e., between two integrated time intervals. However, during inference,

. . .. . t
most users are interested in the predictive variance k?;f )

oy . . . . t . . .
Definition 3. The predictive variance k%5;" of a Gaussian process is a variance

within the original space of the non-integrated Brownian motion. For a given
point t, k?(;{ft quantifies how likely a prediction vy, is equal to the unobserved
ground truth g .

The predictive variance k?aﬁt is often used to quantify the uncertainty asso-

ciated with predictions yy [27]. To calculate it, we need to calculate the partly
integrated covariance kr¢.
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Definition 4. The partly integrated covariance kry is the covariance between
an inference point t' (point in the original space of non-integrated Brownian
motion) and an integration time interval (s,e). It is calculated as a one-time
integration of kg :

kzp((s,e),t') :Ub‘/ min(t,t')ot.

Theorem 2. The partly integrated kernel admits the following solution:

ift <s<e:
Fi(t',s,e)
ifs<t <e:
ft’(sat/) +‘7:t(t/7tl7€)
ifs<e<t:
}—t/(57e)

k]:f’((sve)at/) =V

with Fy, Fy as follows:

Fet, ' u)y=t-u' —¢- 1, (4)

1 1
.Ft/ (l/,u/) = Q’U//Q — §l/2. (5)

We obtain this partially integrated covariance by one-time integration of
kg (t,t'). The proof follows as a direct result from the proof of Theorem [1} see
Supp.Mat. [§| Here, Equations [4] and [5| are an intermediate result (compare with
Equations and from Supp.Mat. (8]

We can now calculate the predictive variance k295" of the Gaussian process,
according to [23| with the standard formula for Gaussian processes. Here we
use matrix notation, where Ky, Kry, Kpp is the matrix obtained by using the
appropriate kernel &y (x, %), kz g (%, %), krz (%, *) and Kf;St is the result matrix

that corresponds to k?;‘ft:

Corollary 1.
K%' = Ky — Kip Kk K
o T B ff fFRppAFf-.

5 Experimental Design

We derived the Brownian Integral Kernel (BIK) and highlighted its advantages
over existing kernels.

To validate our findings, we compare the BIK in various scenarios against
the Brownian Kernel (BK), the RBF Integral Kernel (RBFIK) from [5], and the
Brownian Kernel with added white noise (BNK) [2,14]. The comparisons assess
prediction quality, variance estimation, and the plausibility of data generated by
a GP conditioned on integral measurements.
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5.1 Used Data

For our evaluation, we use data from multiple sources: Synthetic data: Synth
from a Gaussian process with a Brownian Kernel and subsequent numeric inte-
gration. Simulated data: Load generated with a realistic and widely used data
generator [21]. Real-world data: Real provided by a private household, HIPE
using the High-resolution Industrial Production Energy (HIPE) data set [1], and
Stock, using daily stock market prices from [11]. More details on the used data
can be found in our Supp.Mat. [5] We provide all used datasets which are other-
wise not easily accessible, together with the experiment code within our GitHub
repository to facilitate reproducibility.

It is important to note that, contrary to the intuition of the name load profile,
load profiles can have both positive and negative values due to generating nodes
such as photovoltaic systems. Especially for short-term modeling of such load
profiles, they behave Brownean-like because of randomly moving cloud cover [37].
For long-term modeling, one almost always has additional periodicity (day and
night). However, the periods are usually much longer than 15 minutes, which is
why they are not relevant for modeling uncertainty due to integration. Our kernel
can be used for long-term modeling with standard kernel composition by just
adding a periodic kernel. Yet such an extension is not necessary for evaluating
the short-term uncertainty effects we are targeting.

5.2 Metrics

We evaluate multiple application-relevant aspects of the kernels. One is often
interested in the prediction error. However, in our scenario (where one can only
observe integrals of the ground truth but not the ground truth itself) predictions
will always be close to the mean within the observed integration interval. There-
fore, standard metrics such as Mean Square Error (MSE) are not meaningful
when comparing the kernels. Instead, this scenario requires an evaluation that
combines prediction and prediction uncertainty. For this, we use the Weighted
Mean Absolute Error (WMAE):

Definition 5. The WMAE quantifies the estimation quality considering the es-
timated likelihood lgp(t') of an estimation yy vs the ground truth g :

1 .
WMAE = m Z lGP(t/) : |yt’ - yt"

t'eT
with T being the set of test points.

The WMAE is an intuitive measure: The estimated likelihood lgp(t') quan-
tifies for a prediction y; how likely this prediction is. If the model is confident
(lgp(t') = 1) and the prediction is accurate, the WMAE is low. WMAE penal-
izes prediction errors more when the model is (wrongly) confident, and less when
it is (correctly) uncertain. Note that we are interested in the likelihood per data
point, thus it is not required to normalize the likelihood across all data points.
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While the WMAE is relevant for the prediction accuracy, we can also di-
rectly evaluate the estimated uncertainty. For this, we calculate the variance
of the ground truth within an integration interval and compare it with the esti-
mated variance, which should be similar. We use the Mean Square Error MSE,,
between true and estimated variance. Please note, that this metric is only mean-
ingful in combination with the prediction error.

Finally, we evaluate whether the generated data (which is partially condi-
tioned on observed integral measurements) matches the process assumptions:
We know that the integral of the ground truth results in the observed integral
measurement. Therefore, the integral of generated data should also result in the
observed integral. Here, we calculate the Mean Absolute Error MAE;,,; between
the integral measurement and the integral value of generated data. We calculate
the integral value of generated data by sampling data at the same points in time
used to calculate the ground truth integrals and then apply the same window-
ing procedure, i.e., summing all the resultant values within the integration time
interval.

5.3 Experiment Procedure and Model

We evaluate each kernel using the same Gaussian process model. As a model,
we use the standard GPy implementation [9]. We also train all configurations
in the same way, using the GPy gradient-based maximum likelihood optimizer
in its standard configuration [9]. In this configuration, the optimizer performs 5
independent optimization runs, each time with random start kernel parameters.
The model then uses the parameters from the best run.

For each dataset, we repeat this procedure 20 times, each time with a different
ground truth time series. We then calculate the mean and the variance across
the runs of the respective metrics.

6 Evaluation

For brevity, we focus here on the quantitative experiments. However, we fea-
ture additional qualitative kernel comparisons and visualizations in Supp.Mat. [6]
These are especially useful for domain experts who like to attain an intuitive vi-
sual understanding of the superiority of the BIK against other kernels. Further,
we provide an ablation study of process and kernel parameters in Supp.Mat. [7],
and a theoretical runtime analysis in Supp.Mat.

A comparison of the different approaches, in Table [I} shows that BIK is
superior to its competitors in every regard evaluated: The integral of generated
data has at least 10 times lower MAE;,,; compared to all baselines. (The RBFIK
from [5] cannot generate data.) For our BIK, we provide a more detailed analysis
of MAE;,,; in Supp.Mat. [7}

Regarding the prediction with uncertainty, BIK has at least 2 times better
WMAE on Load and Synth w = 25 than with all competitors. On Synth w =
50, 100, 200 the baselines catch up a bit, but BIK still beats them by 30% less
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Table 1. Evaluation metrics for different kernels and data sets. Bold entries mark the
best result within one metric

Metrics
Data Kernel MSE, . MAE;,; WMAE
BIK 5.82 + 12. 7.6 + .45 3.79 + 2.9
Synth RBFIK 24.9 + 25. — 44.2 + 60.
w=25 BK 15.6 + 20. 72.8 + 4.6 6.9 + 133
BNK 15.6 + 20. 73.0 + 6.0 6.9 + 133
BIK 5.87 + 14. 3.67 + .26 2.33 + 2.0
Synth RBFIK 24.6 + 27. — 13.5 + 19.
w=50 BK 20.8 + 25. 71.1 + 5.8 3.38 + 42.
BNK 20.8 + 25. 72.4 + 4.3 3.38 + 42.
BIK 4.7 + 13. 2.0 + .14 4.35 + 3.3
Synth RBFIK 20.6 + 25. — 44.8 + 62.
w=100 BK 17.8 + 23. 68.5 + 5.2 5.95 + 89.
BNK 17.8 + 23. 70.0 + 4.7 5.95 + 89.
BIK 5.41 + 9.2 1.12 + .09 4.27 + 3.5
Synth RBFIK 22.4 + 19. — 50.9 + 71.
w=200 BK 20.6 + 18. 63.2 + 5.4 5.50 + 51.
BNK 20.6 + 18. 62.9 + 4.2 5.50 + 51.
BIK .50 + 1.2 .39 + .006 .35 + .74
Load RBFIK 64+ 1.6 - 354+ 7.4
oa BK 66+ 1.6 3.3 + .07 12. + 26.
BNK 56 + 1.4 3.7 4+ .08 80 + 1.7
BIK 12.5 + 26. .69 + .031 0.42 + 0.3
RBFIK 43.1 + 43. — 8.02 + 6.5
HIPE BK 45.5 + 44. 5.84 + .21 518. + 429
BNK 45.5 + 44. 5.69 + .19 476. + 395
BIK 1.13 + 2.9 14.8 + 1.1 0.32 + 0.3
Stock RBFIK 3.65 + 5.1 — 4.48 + 3.9
o¢ BK 3.98 + 5.3 63.1 + 3.2 46k + 38k
BNK 3.98 + 5.3 60.9 + 2.6 45k + 38k

error. Also, the WMAE variance suggests that the baselines are very unstable
across data sets.

The MSE,,, between predicted variance and actual variance during mea-
surement on Synth, HIPE, Stock is 2.6 times better for BIK than any baseline.
On Load BIK is still 10% better.

Note that the results of BK and BNK are similar on synthetic data. This
similarity arises because BNK learns a noise of zero. Indeed, BNK only gives
good uncertainty estimates when trained on several different observations of the
same data point (or with a smaller time step). With integral measurements, such
data cannot be observed, leading to BNK learning incorrect small variances.
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One may also notice that the variance in predictive variance (measured with
MSE, ) is high across the experimental runs for all kernels. This is to be ex-
pected, since by chance the ground truth is sometimes simply close to the average
within the integration interval, leading to a high deviation. Even with this high
deviation, MSE,,; is still meaningful for comparing the quality of the uncertainty
quantification as long as the prediction error is similar. Even though BNK es-
timates a similar uncertainty as BIK, the metrics MAE;,; and WMAE show
that the uncertainty estimation of BNK is useless because of its much higher
prediction error.

7 Conclusions

Integrated Brownian motions are crucial in many physical processes and data
collection techniques. The conventional Brownian kernel, while effective for mod-
eling Brownian motion, falls short in capturing the uncertainties associated with
integrated data.

This study has tackled modeling integrated Brownian motions precisely, by
providing an analytical solution to the novel Brownian integral kernel (BIK).
The BIK enables precise estimation of variance associated with the underlying
quantity of interest. Further, the BIK is a valuable tool for tasks like regres-
sion with uncertainty estimation and for data synthesis partially conditioned on
measurements, as shown in our experiments.

Our contributions bridge a significant gap in modeling integrated processes.
Our Brownian integral kernel enhances the accuracy and reliability of Gaussian
process modeling in such uncertain and dynamic environments by a factor of
at least 2 on every dataset and against every baseline. Data synthesis with our
integral kernel is better by a factor of at least 10 compared to all baselines.

While our Brownian integral kernel is a substantial advancement, there are
avenues for further exploration: First, the challenge of concept drift, i.e., changes
of behavior of the underlying ground truth stream, and how to handle it, is a
relevant research direction. Additionally, investigating the properties of other
integrated processes besides the Brownian integrated process could result in
additional new kernels useful for modeling such processes. Finally, using our
kernel in applied research could lead to advances in several directions, such as
estimating privacy violations and disaggregating load data from smart meters.

Supplementary Material We include detailed notation, additional experiments, and
proofs in our Supp.Mat. published on Git Hubﬂ
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