
Monte Carlo Dependency Estimation
Edouard Fouché & Klemens Böhm

Karlsruhe Institute of Technology (KIT)

{edouard.fouche,klemens.boehm}@kit.edu

ABSTRACT
Estimating dependency is a fundamental task in data management.

Identifying the relevant variables leads to better understanding and

improves both the runtime and outcome of data analysis. In this

paper, we propose Monte Carlo Dependency Estimation (MCDE), a

framework to estimate multivariate dependency. MCDE quantifies

dependency as the average discrepancy between marginal and con-

ditional distributions via Monte Carlo simulations. Based on this

framework, we present Mann-Whitney P (MWP), a novel depen-

dency estimator. We show thatMWP satisfies a number of desirable

properties and demonstrate the superiority of our estimator against

the state-of-the-art multivariate dependency measures.

CCS CONCEPTS
• Mathematics of computing → Multivariate statistics; Exp-
loratory data analysis; • Information systems→ Data mining.

KEYWORDS
Dependency Estimation; Correlation Analysis; Anytime Algorithms

ACM Reference Format:
Edouard Fouché & Klemens Böhm. 2019. Monte Carlo Dependency Estima-

tion. In 31st International Conference on Scientific and Statistical Database

Management (SSDBM ’19), July 23–25, 2019, Santa Cruz, CA, USA. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3335783.3335795

1 INTRODUCTION
1.1 Motivation
Estimating statistical relationships between variables is fundamen-

tal to any knowledge discovery process and has become an im-

portant topic in the database community [4, 9, 28]. Knowing the

relationship between attributes, one can infer useful knowledge

about unknown outcomes. For example, knowing that weight and

arterial pressure correlate with the odds of contracting certain dis-

eases may guide physicians, when predicting whether a patient will

become sick within a year or not.

In the real world, data often comes as an open-ended, ever evolv-

ing stream of sensor signals. The signals can be noisy, redundant or

generated at a varying speed. In this setting, the timely detection of

changes in the stream is crucial; the early discovery of anomalies

can, say, facilitate predictive maintenance and yield tremendous

cost savings. We see the following requirements which any depen-

dency estimator should satisfy. To our knowledge, any existing

SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in 31st International

Conference on Scientific and Statistical Database Management (SSDBM ’19), July 23–25,

2019, Santa Cruz, CA, USA, https://doi.org/10.1145/3335783.3335795.

solution only fulfils some of them at best. In this article, we propose

a new estimator which features all these characteristics:

R1: Multivariate. Bivariate measures only apply to two entities

(i.e., variables, vectors). Estimating the dependency between more

than two entities is useful as well, but existing attempts to generalize

bivariate measures lack efficiency or effectiveness, as we will show.

R2: Efficient. Monitoring and respective computations should

be ‘at least as fast’ as the stream. Next, one often is not only inter-

ested in one set of attributes, but potentially in all of them. Since

the number of attribute combinations grows exponentially with

the number of attributes, the efficiency of dependency estimators

is crucial, with large data sets in particular.

R3: General-purpose. Dependency estimators should not be

restricted to specific types of dependency, or they may miss im-

portant associations. Existing multivariate estimators are typically

limited, e.g., to monotonous dependencies or to functional ones.

R4: Intuitive. A method is intuitive if its parameters are easy

to set, i.e., users understand their impact on the estimation process.

Existing solutions typically have unintuitive parameters, and the

suggestion of ‘good’ parameter values often happens at the discre-

tion of the inventors. Different values often yield very different

results. This calls for a method that is intuitive to use.

R5: Non-parametric. Since real data can exhibit virtually any

kind of distribution, it is not reasonable to use measures relying on

parametric assumptions. The risk is to systematically miss relevant

effects with wrong assumptions.

R6: Interpretable. The results of dependency estimators should

be interpretable. In particular, the returned estimate should have

a maximum and a minimum, so that one can interpret a given

estimate from ‘highly dependent’ to ‘independent’.

R7: Sensitive. Dependency estimation is not only about decid-

ing whether a relationship exists, but also about quantifying its

strength. Data points generally are observations sampled from a

potentially noisy process. The same dependency should get a higher

score when observed with more objects, as the size of the observed

effect – the ‘effect size’ – is larger.

R8: Robust. Real-world data may be of poor quality. It is com-

mon to discretise attributes, for a more compact representation.

Next, measuring devices often have a limited precision, such that

values are rounded or trimmed, wrongly leading to points with ex-

actly the same values. Such artefacts can have a negative influence

on the estimation. In other words, estimators need to be robust

against duplicates and imprecision.

R9: Anytime. Last but not least, users should be able to trade

accuracy for a faster computation and to interrupt the estimation

process at any time; a data set may be too large to allow for accept-

able computation times, or the rate of incoming items from a data

stream may vary. Thus, users should be able to set a ‘budget’ they

are willing to spend, and the estimator should return approximate

results, ideally with a known quality, in case of early termination.

https://doi.org/10.1145/3335783.3335795
https://doi.org/10.1145/3335783.3335795

1.2 Contributions
The contributions of this article are as follows:

We introduceMonteCarloDependency Estimation (MCDE),
a framework to estimate multivariate dependency.MCDE es-

timates the dependency of an attribute set as the average discrep-

ancy between marginal and conditional distributions, via Monte

Carlo simulations. In each iteration, a condition is applied on each

dimension, in a process called subspace slicing [11]. A statistical test

quantifies the discrepancy between the marginal and conditional

distributions of a dimension taken at random. MCDE is abstract,

since the underlying statistical test is left unspecified. We determine

a lower bound for the quality of the estimation, allowing to trade a

quantifiable level of accuracy for a computational advantage.

As a proof of concept, we instantiate withinMCDE a new
dependencymeasure, namedMann-Whitney P (MWP).MWP

relies on the Mann-Whitney U test, a well-known non-parametric

statistical test [15], to quantify the average discrepancy between

the marginal and conditional distributions. We describe the imple-

mentation ofMWP in detail. We compare our estimator to the state

of the art. We benchmark each approach using an assortment of

synthetic dependencies. In particular, we measure the statistical

power and execution time of each approach. This will show that

MWP fulfils all requirements while the existing ones do not.

We release our source code and experiments on GitHub1,
together with documentation, to ensure reproducibility.

Paper outline: Section 2 reviews related work. Section 3 describes

MCDE and MWP. Section 4 evaluates MWP and compares it to the

state of the art. Section 5 concludes. In Appendix, we provide the

formal proofs and details about our algorithms and experiments.

2 RELATEDWORK
Estimating the correlation has been of interest for more than a

century. Many bivariate measures exist, e.g., [21, 24]. Some of them

also target at quantifying the association between two vectors

which are possibly multivariate [1, 8, 14, 25]. However, they can

only measure the dependency between two entities – not several

ones, i.e., they do not fulfil requirement R1. They also often have

other drawbacks. For example, the Pearson correlation coefficient is

parametric (R5) and targets at linear dependencies (R3).
There are attempts to extend bivariate dependency measures to

the multivariate case. [22] propose an extension of Spearman’s ρ
to multivariate data (MS), but it is limited to monotonous relation-

ships (R3). Several authors also propose multivariate extensions of

Mutual Information [26]. For example, Interaction Information (II)

[16] quantifies the ‘synergy’ or ‘redundancy’ in a set of variables.

Similarly, Total Correlation (TC) [27] quantifies the total amount of

information. However, information-theoretic measures are difficult

to estimate, as they require knowledge about the underlying proba-

bility distributions. Density estimation methods, based on kernels,

histograms or local densities, all require to set unintuitive parame-

ters (R4) and may be computationally expensive (R2). Next, with
many dimensions, density estimation becomes meaningless, due

to the curse of dimensionality [2]. Information-theoretic measures

also are difficult to interpret (R6), since they usually correspond to

a quantity of bits or nats, that is theoretically unbounded.

1
https://github.com/edouardfouche/MCDE-experiments

More recently, Cumulative Mutual Information (CMI) [20],Multi-

variate Maximal Correlation (MAC) [19] and Universal Dependency

Score (UDS) [18] have been proposed as multivariate dependency

measures. They are remotely related to concepts from information

theory, as they rely on the so-called cumulative entropy [5]. How-

ever, these measures are computationally expensive (R2) and not

intuitive (R4). They also are difficult to interpret, because their

theoretical maximum and minimum vary with the number of di-

mensions (R6). Another approach, High Contrast Subspaces (HiCS)

[11], is the one most similar to MCDE/MWP. It introduces subspace

slicing as a heuristic to quantify the potential of subspaces to con-

tain outliers. Yet the suitability of HiCS as a dependency estimators

is unknown so far. To our knowledge, the requirements R7, R8 and
R9 have not been considered in the literature.

In Section 4, we compare our estimatorMWP to the related work,

namely MS, TC, II, CMI, MAC, UDS and HiCS, against each of our

requirements, via experiments.

3 THE MCDE FRAMEWORK
Dependency estimation determines to which extent a relationship

differs from randomness. In this spirit, MCDE quantifies a depen-

dency, i.e., an extent of independence violation, based on marginal

and conditional distributions.

3.1 Notation
A database DB is a set of dimensions/attributes/variables D =
{s1, . . . , sd } and a list of objects B = (®x1, . . . , ®xn), where ®xi =

⟨x
sj
i ⟩j ∈{1, ...,d } is a d-dimensional vector of real numbers. We call a

subspace S a projection of the database on d ′ attributes, with S ⊆ D
and d ′ ≤ d . To formalize our framework, we treat the attributes

in D as random variables, i.e., a random variable Xsj represents
each attribute sj ∈ D. Additionally, p(X) is the joint probability

density function (pdf) of a random vector X =
〈
Xsi

〉
si ∈S

and let

p̂(X) denote the empirical estimation of this pdf. We use psj (X) and
p̂sj (X) for the marginal pdf of sj and its estimation. P(S) is the
power set of S , i.e., the set of all attribute subsets. For any attribute

subset S ′ ∈ P(S), its random vector is XS ′ =
〈
Xsi

〉
si ∈S ′

, and its

complement random vector is XS ′ = XS\S ′ =
〈
Xsi

〉
si ∈S\S ′

.

3.2 Theory of MCDE
3.2.1 Measuring Dependency via Contrast. A set of variables is

independent or uncorrelated if and only if all the variables aremu-
tually independent. By treating the attributes of a subspace as

random variables, we can define the independence assumption of a

subspace as follows:

Definition 1 (Independence Assumption). The independence

assumptionA of a subspace S holds if and only if the random variables

{Xsi : si ∈ S} are mutually independent, i.e.:

A(S) ⇔ p(X) =
∏
si ∈S

psi (X) (1)

Under the independence assumption, the joint distribution of

subspace S is expected to be equal to the product of its marginal

distributions. We can define a degree of dependency based on the

degree to which A does not hold:

2

https://github.com/edouardfouche/MCDE-experiments

Definition 2 (Degree of Dependency). The degree of depen-

dency D of a subspace S is the discrepancy, abbreviated as ‘disc’,
between the observed joint distribution po (X) and the expected joint

distribution pe (X) =
∏

si ∈S p
o
si (X):

D(S) ≡ disc
(
po (X),pe (X)

)
(2)

While one can estimate the discrepancy between two probability

distributions, using for instance the Kullback-Leibler divergence,

this is not trivial here because po (X) and pe (X) are a priori un-

known. We work around this as follows:

Lemma 1. The independence assumption A of a subspace S holds

if and only if the joint pdf for all S ′ ∈ P(S) is equal to its joint

conditional pdf given all other variables S \ S ′:

A(S) ⇔ p(XS ′ |XS ′) = p(XS ′) ∀S ′ ∈ P(S) (3)

Lemma 1 provides an alternative definition of A. However, it is

still problematic: First, a multivariate density estimation is needed

to estimate p(XS ′) and p(XS ′ |XS ′) with |S
′ | ≥ 1 in the multivariate

case. Second, even if one could estimate p(XS ′) and p(XS ′ |XS ′),

estimating the densities for all S ′ ∈ P(S) is intractable. We instead

relax the problem by considering only subspaces with |S ′ | = 1, i.e.,

we only look at the marginal pdf of single variables.

Definition 3 (Relaxed Independence Assumption). The re-

laxed independence assumption A∗ of a subspace S holds if and only

if the marginal distribution psi (X) of each variable si ∈ S equals

psi (X |Xsi), i.e., the conditional pdf of si :

A∗(S) ⇔ psi (X |Xsi) = psi (X) ∀si ∈ S

Lemma 2 (Independence Assumption Relaxation). A(S) ⇒
A∗(S), i.e., we can relax A into A∗ for any subspace S .

Loosely speaking, the relaxed independence assumption holds if

and only if knowing the value of all variables but si does not bring
any information about si .
A(S) ⇒ A∗(S), then ¬A∗(S) ⇒ ¬A(S), i.e., showing that A∗

does not hold is sufficient but not necessary to show thatA does not

hold. Thus, we can define a relaxed degree of dependency D∗ of a

subspace S , as the discrepancy disc between the observed marginal

distribution posi (X) and the expected one pesi (X). Under the relaxed

independence assumption A∗, we have pesi (X) = posi (X |Xsi). We

define D∗ as the expected value E[.] of this discrepancy:

Definition 4 (Relaxed Degree of Dependency).

D∗(S) ≡ E
si ∈S

[
disc

(
posi (X),p

o
si (X |Xsi)

)]
(4)

This definition is broad and contains a whole class of dependency

estimators, e.g., [11]. This class of estimators aims at measuring

a so-called notion of contrast of the subspace. D∗ – or contrast –

is a variant of D which is much easier to estimate: First, it relies

on the comparison of marginal against conditional densities, i.e.,

multivariate density estimation is not required. Second, the number

of degrees of freedom of A∗(S) increases linearly with |S |, while
exponentially for A(S). Thus, D∗ is less expensive to estimate.

By definition, D∗ does not take into account the dependency

between multivariate subsets, but only of each variable versus all

others. However, we argue that this relaxation is not problematic,

and even supports interpretability. In fact, the detection of depen-

dency is only interesting as long as we can observe effects w.r.t.

the marginal and conditional distributions: In real-world scenarios,

one is typically looking for interpretable influences of particular

variables – so-called ‘targets’ – on the system and vice versa.

3.2.2 Estimating Conditional Distributions. The difficulty to es-

timate D∗ is estimating the conditional distributions psi (X |Xsi),
because the underlying data distribution is unknown. As suggested

in [11], we can simulate conditional distributions by applying a set

of conditions to S , in a process called subspace slicing.

Definition 5 (Subspace Slice). A slice ci of subspace S w.r.t.

dimension si is a set of |S | − 1 conditions

[
lsj ,usj

]
, which restricts the

values of each dimension sj ∈ S \ si :

ci =
{[
lsj ,usj

]
: sj ∈ S \ si

}
s .t . ∀ [

lsj ,usj
]
∈ ci ,

���{ ®xk : x
sj
k ∈

[
lsj ,usj

]}��� = n′
where n′ ∈ {1, . . . ,n} is the number of objects per condition, and si is
the reference dimension. We say that ®xk ∈ ci when ®xk fulfils all the

conditions in ci . We define c̄i as the set of complementary conditions:

c̄i =
{
(−∞, lsj) ∪ (usj ,∞) :

[
lsj ,usj

]
∈ ci

}
(5)

psi |ci (X) and psi |c̄i (X) denote the conditional pdf of the observation
in the slice ci and of its complement c̄i respectively. P

c (S) is the set
of all possible slices in subspace S .

We choose each interval in a slice at random and independently

from each other. Under the independence assumption, the expected

share of observations α in the slice is equal to α = (n′/n) |S |−1
.

Interestingly, n′ can be determined given α and |S |:

n′ =
⌈
n |S |−1
√
α
⌉

(6)

As a result, subspace slicing can be done in a dimensionality-
aware fashion. When α is a constant, the expected number of

objects per slice does not change between subspaces with different

dimensionality. Thus, subspace slicing is a dynamic grid-based

method, which does not suffer from the curse of dimensionality.

Definition 6 (Dimensionality-aware Slice). A dimensionali-

ty-aware slice cαi of subspace S is a set of |S | − 1 conditions:

cαi = ci s .t . n
′ =

⌈
n |S |−1
√
α
⌉

(7)

For brevity, we assume a fixed α ∈ (0, 1) and write ci ≡ c
α
i , and

we omit ‘(X)’ in psj (X) and psj |c j (X) in the following.

The idea behind dimensionality-aware slicing is to simulate con-

ditional distributions empirically. Under the A∗-assumption, the

conditional distribution psi |ci equals the marginal distribution psi ,
for any dimension si and slice ci .

Lemma 3 (A∗ and Conditional Distributions).

A∗(S) ⇔ psi |ci = psi ∀si ∈ S,∀ci ∈ Pc (S) (8)

3.2.3 Discrepancy Estimation. In reality, one only has a limited

number of observations, i.e., one only has access to empirical dis-

tributions. A solution is to use a statistical test T :

disc
(
p̂si , p̂si |ci

)
≡ T

(
p̂si , p̂si |ci

)
(9)

3

(a) Independent (b) Linear (c) Circle

Figure 1: Slicing in 2-D subspaces, with α = 0.5

However, since the number of observations is finite, the observa-

tions from p̂si |ci are included in the set of observations from p̂si .
This is problematic, as statistical tests assume the samples to be

distinct. Plus, when α ≈ 1, p̂si |ci converges to p̂si , i.e., the two

populations are nearly the same. Conversely, α ≈ 0 yields spurious

effects, since the sample from p̂si |ci is then small. We solve the

problem by observing that psi |ci and psi |c̄i are equal under A
∗
.

Theorem 1 (A∗ and Complementary Conditions).

A∗(S) ⇔ psi |c̄i = psi |ci ∀si ∈ S,∀ci ∈ Pc (S) (10)

Hence, one can evaluate the assumption by looking instead at

the discrepancies between the conditional distribution and its com-

plementary conditional distribution. When doing so, the samples

obtained from both distributions are distinct.

Dimensionality-aware slicing is defined based on α , the expected
share of observations in the slice ci . Thus, the expected share of

observations ᾱ in c̄i equals 1 − α . This leads to setting α = 0.5, so

that ᾱ = α . This choice is judicious for statistical testing, as equal
sample sizes lead to higher statistical stability, and we get rid of α .

To further improve slicing, we also propose to restrict the do-

main of the reference dimension si to the same proportion α of

objects. When doing so, statistical testing detects local effects in the

marginal distributions better than when considering the full range.

Next, this reduces the number of points in the two samples, leading

to lower computational requirements of the underlying statistical

test. Formally, we define the marginal restriction as follows:

Definition 7 (Marginal Restriction). A marginal restriction

is a condition on the reference dimension si , i.e., an interval ri :

[lsi ,usi], such that |{ ®x j : xsij ∈ ri }| = ⌈α · n⌉. We define psi |ci |ri as

the restricted conditional distribution given ci , ri . P
r (S) is the set of

all restrictions in subspace S .

We illustrate slicing in Figure 1, with an independent subspace on

the left-hand side and with subspaces with noisy dependencies on

the right. The grey lines show a random slice cx on the y-axis. Two
black bold lines stand for the restriction rx . The points in dark blue

are in the restricted slice cx |rx and the points in light orange are in

c̄x |rx . Using histograms, we plot along the x-axis the distribution
of the points in both samples. From the histograms, we can see that

the two distributions are relatively similar for Figure 1(a), while

they are clearly different for Figures 1(b) and 1(c).

After each slicing operation, one obtains two object samples

Bci |ri and Bc̄i |ri such that Bci |ri ∩Bc̄i |ri = ∅, and we use a statistical
test T to estimate the discrepancy between p̂si |ci |ri and p̂si |c̄i |ri .

A statistical test T (B1,B2) on two samples B1 and B2 typically

yields a p-value. Traditionally, one uses p-values to assess the sta-

tistical significance. Conversely, pc = 1 − p is a confidence level or

probability to truly reject a false null hypothesis. The rationale

behind D∗ is to yield values quantifying the independence viola-

tion. We define our own notion of contrast, abbreviated as C, as the

expected value of the confidence level of a statistical test T between

the samples from the conditional distributions for all the possible

dimensions si , slices ci and restrictions ri :

Definition 8 (Contrast C).

C(S) ≡ E
{ci ,ri }∈Pc×r

[
T

(
Bci |ri ,Bc̄i |ri

)]
(11)

where the test T yields pc -values, and we draw ci , ri randomly and

independently from each other from Pc×r ≡ Pc (S) × Pr (S), w.r.t.
any reference dimension si in subspace S .

By definition, T ∼ U[0, 1] when the two samples are indepen-

dent, and T ≈ 1 as the evidence against independence increases.

The properties of C follow:

(1) C converges to 1 as the dependency in S increases, since the

pc -values converge to 1 stochastically.

(2) C converges to 0.5 when S is independent, since the distri-

bution of the pc -values converges toU[0, 1].
(3) C is bounded between 0 and 1.

3.2.4 Monte Carlo Approximation. Unfortunately, C is impossible

to compute exactly; one would need to know the distribution for

every dimension, slice and restriction. Instead, we approximate

C via Monte Carlo (MC) simulations, usingM iterations. At each

iteration, we choose the reference, slice and restriction at random.

The approximated contrast
ˆC is defined as follows:

Definition 9 (Approximated Contrast
ˆC).

ˆC(S) =
1

M

M∑
m=1

T

(
B[ci |ri]m ,B[c̄i |ri]m

)
(12)

where [ci |ri]m means that we draw i , ci and ri randomly at itera-

tionm, i.e., i ← {1, ..., |S |} and {ci , ri } ← P
c×r

.

Interestingly, we can bound the quality of the approximation.

From Hoeffding’s inequality [10], we derive a bound on
ˆC w.r.t. C,

which decreases exponentially with increasingM :

Theorem 2 (Hoeffding’s Bound of
ˆC).

Pr

(
| ˆC − C| ≥ ε

)
≤ 2e−2Mε2

(13)

whereM is the number of MC iterations, and 0 < ε < 1 − C.

This is very useful. For instance, whenM = 200, the probability

of
ˆC to deviate more than 0.1 from its expected value is less than

2e−4 ≈ 0.04, and this bound decreases exponentially withM . Thus,

one can adjust the computational requirements of
ˆC, given the

available resources or a desired quality level. In other words, users

can set M intuitively, as it leads to an expected quality, and vice

versa. Furthermore,M is the only parameter ofMCDE. See Appendix

A for our formal proofs.

4

3.3 Instantiation as MWP
To use the MCDE framework, one must instantiate a suitable statis-

tical test as T . To comply with our requirements, this test needs to

be non-parametric (R5) and robust (R8). As a proof of concept,
we instantiate T as a two-sided Mann-Whitney U test [15].

The U test has the following features which other statistical tests

may lack. First, it is one of the most powerful statistical tests [17]:

Its power-efficiency approaches 95.5% when comparing it to the

t-test, as the number of observations n increases. But contrary to

the t-test, the U test is non-parametric. Second, [6] shows that
the U test is more efficient than the Kolmogorov-Smirnov test for

large samples. Finally, the U test does not require continuous data,

as it operates on ranks. Thus, it is robust and applicable to virtually
any kind of ordinal measurements.

Our approach, MWP, is the instantiation of
ˆC using a two-sided

U test as the statistical test T . The letter P emphasises that the

test returns a pc -value, as required by MCDE, i.e., whenever the

evidence against independence increases, the values of the U test

approach 1. MWP is the average of this test overM iterations:

Definition 10 (Mann-Whitney P (MWP)).

MWP =
1

M

M∑
m=1

U

(
B[ci |ri]m ,B[c̄i |ri]m

)
3.4 Algorithmic Considerations & Complexity
We now give an overview of our algorithm to efficiently compute

the MWP score of a subspace S . See Algorithm 1.

First, we construct an index (Line 2), as a preprocessing step, to

avoid the expensive repetition of sorting operations. Afterwards, for

M iterations, we slice the data (Line 6) and compute the U test (Line

7). We can do this efficiently thanks to the index, because tuples

are sorted. MWP is the average U test outcome overM iterations.

Algorithm 1 MWP

1: function MWP(S = {si }i ∈{1, ...,d })
2: I ← ConstructIndex(S)
3: result← 0

4: form ← 1 toM do
5: r ← random integer in [1,d]
6: slice ← Slice(I, r)
7: result← result + U-test(I, slice, r)
8: result← result/M
9: return result

To replace the statistical test, one only needs to change the

algorithm behind U-test. The rest is part of the MCDE framework

and does not require any adaptation. Since |S | ≪ n, the overall

complexity ofMWP is inO(n ·loд(n)+M ·n). The index construction
is asymptotically the most expensive step, as it is in O(n · loд(n)).
However, one only needs to construct the index once. When the

index for a given data set is available, one can compute MWP in

linear time for the exponential number of subspaces. Thus, MWP

scales well with the size of the data set. In Appendix B, we outline

our algorithms for the index construction, slicing and the statistical

test. We also provide a detailed complexity analysis.

(a) Cross (C) (b) Double linear (Dl) (c) Hourglass (H)

(d) Hypercube (Hc) (e) Hc Graph (HcG) (f) Hypersphere (Hs)

(g) Linear (L) (h) Parabolic (P) (i) Sine (P=1) (S1)

(j) Sine (P=5) (S5) (k) Star (St) (l) Z inversed (Zi)

Figure 2: 12 selected multidimensional dependencies

4 EVALUATION
We implement every approach in Scala. We re-implement MS fol-

lowing [22], TC and II following [26] using Kraskov’s [13] and

Kozachenko & Leonenko estimators respectively, with k = 4. We

use the R*-tree implementation from ELKI [23] to increase the effi-

ciency of the k-NN queries. For CMI, MAC, UDS and HiCS, we use

the implementation in [18]. Each algorithm runs single-threaded

in a server with 32 cores at 2.2 GHz and 64GB RAM, with default

parameters, if any. If not stated otherwise, the samples we use have

n = 1000, d = 3, and we set M = 50 for MWP and HiCS. In most

existing studies, such as in [19, 21], n usually is equal or lower.

Hereafter, we focus on the comparison of MWP to the state-of-

the-art approaches. Appendix C contains a detailed evaluation of

MWP w.r.t. parameters d , n,M and requirements R7 and R8.

4.1 Methodology
To compare the approaches, we characterise the score they produce

w.r.t. different dependencies of variable noise. Intuitively, noiseless

dependencies should lead to higher scores than noisier ones.

4.1.1 Dependency Generation. For benchmarking, we use an as-

sortment of 12 multivariate dependencies scaled to [0, 1], as showed

in Figure 2. For each dependency, we repeatedly draw n objects

with d dimensions, to which we add Gaussian noise with standard

deviation σ , which we call noise level. We provide the pseudo-code

for the generation of each dependency in Appendix B.

4.1.2 Evaluation Measures. A dependency estimator E is an op-

erator E(S) 7→ score which computes a score for a subspace S . We

inspect the score of each estimator E against each dependency

X, with increasing noise level σ . We consider 30 noise levels, dis-

tributed linearly from 0 to 1. For better comparability, we also

include the independent subspace I in the experiments, where each

attribute is i.i.d. in U[0, 1]. For each dependency and each noise

level, we draw 500 subspaces to compute the estimate. We record

the average (avg) and standard deviation (std) for each estimator

and, as in other multivariate studies [12, 18, 21], we compute the

statistical power with confidence γ = 0.95, see Appendix C.

5

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

av
g

MWP TC II HiCS MS UDS MAC CMI

0 ← σ → 1

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

st
d

0 ← σ → 1 0 ← σ → 1 0 ← σ → 1 0 ← σ → 1 0 ← σ → 1 0 ← σ → 1 0 ← σ → 1

0.5

0.6

0.7

0.8

0.9

1.0

10−3

10−210−2

10−1

100

101

10−3

10−210−2

10−1

100

101

0.08

0.16

0.24

0.32

0.40

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.15

0.30

0.45

0.60

0.30

0.45

0.60

0.75

0.90

0.1

0.2

0.3

0.4

0.5

0.01

0.03

0.04

0.06

0.07

0.00

0.04

0.08

0.12

0.16

0.20

0.0

0.1

0.2

0.3

0.4

0.5

0.005

0.010

0.015

0.020

0.025

0.000

0.005

0.010

0.015

0.020

0.025

0.00

0.01

0.03

0.04

0.06

0.07

0.02

0.04

0.06

0.08

0.10

0.003

0.005

0.007

0.010

0.013

Figure 3: Distribution of dependency estimation scores, d = 3

4.2 Score Distribution and Statistical Power
We observe the distribution of the scores for each approach in

Figure 3. Please note that the figures are best seen in colour. The

expectation is that the scores and statistical power are high for

noiseless dependencies, i.e., the left side of the plot is blue, and de-

crease gradually as we add noise. A noise level σ = 1 is comparably

high, since the data is scaled to [0, 1]. Thus, the right side of the

plot should be red, standing for low scores, or low power.

First, we see that the average score ofMWP is most similar to TC.

TC however is unbounded, and its scores follow a logarithmic scale.

This means that the estimates of TC change very abruptly. We see

that MWP scores are slightly smaller for noiseless dependencies

with many ties w.r.t. marginal distributions, such as H and Hc,
which we attribute to the correction for ties in theU test.

II can yield positive or negative values. We visualize the absolute

value of II with a logarithmic scale. We mark the dependencies

which obtain a positive score in their noiseless form with a plus

sign. II assigns high scores to every noiseless dependency. However,

the score decreases rapidly with noise, except for L.
HiCS shows a similar behaviour as MWP, except that the scores

decrease faster, and that many dependencies start with a low score,

even in the noiseless form, such as C, Dl, H, Hs, S5 and St.
Next, MS and UDS are restricted to monotonous and bijective

functional relationships respectively. They can detect only 3 out

of 12 dependencies. MAC and CMI behave curiously. Their scores

change noticeably only for C, Dl, L, P and S1. The values of MAC

also change very abruptly and even non-monotonously with noise.

For example, L and S1 obtain lower scores with a noise level of

0.3 than with higher noise levels. CMI evolves smoothly. However,

for many dependencies, including I, the score increases again with

more noise: The shades on the right are lighter, which shows a bias

towards noise, independently from the underlying relationship.

While HiCS, UDS, MAC and CMI are expected to be in [0, 1], the

theoretical maximum or minimum is never reached, even if our

benchmark features both strong and weak dependencies. On the

other hand,MWP andMS exploit all the values of their range, being

[0.5, 1] and [0, 1] respectively. Thus, they are interpretable (R6).

MWP
TC

II
HiCS

MS
UDS
MAC
CMI

C Dl H Hc

MWP
TC

II
HiCS

MS
UDS
MAC
CMI

HcG Hs L P

0 ← σ → 1

MWP
TC

II
HiCS

MS
UDS
MAC
CMI

S1

0 ← σ → 1

S5

0 ← σ → 1

St

0 ← σ → 1

Zi

0.0

0.2

0.4

0.6

0.8

1.0

(a) d = 3

MWP
TC

II
HiCS

MS
UDS
MAC
CMI

C Dl H Hc

MWP
TC

II
HiCS

MS
UDS
MAC
CMI

HcG Hs L P

0 ← σ → 1

MWP
TC

II
HiCS

MS
UDS
MAC
CMI

S1

0 ← σ → 1

S5

0 ← σ → 1

St

0 ← σ → 1

Zi

0.0

0.2

0.4

0.6

0.8

1.0

(b) d = 5

Figure 4: Power against each dependency

6

0 2.5 5.0 7.5 10

n ∗ 103

10−2

10−1

100

101

102

103

104

R
un

ti
m

e
(m

s)

d = 3

2 4 6 8 10

d

n = 1000

MWP TC II HiCS MS UDS MAC CMI

Figure 5: Execution time w.r.t. n and d

Figure 4 reveals that MWP, TC and HiCS achieve high power in

any situation up to a certain extent of noise. MWP shows slightly

more power with C, H, Hc, HcG, Hs and St. II can detect almost

every dependency, but the power decreases rapidly with noise and

dimensionality. MS detects Dl, L, P, S1, S5 and Zi, but misses all

other dependencies.MAC looks unstable, since its power evolves in

a non-monotonous way and decreases with increasing dimension-

ality by much. In fact, it is not able to detect most dependencies

for d = 5. UDS can only detect L, P and S1, a clear limitation.

CMI has maximal power for each dependency and noise level for

d = 3, which is unrealistic: CMI reaches its lowest score against the

noiseless I, our baseline for power.

4.3 Scalability
We measure the average CPU time for each estimator against 500

independent data sets with growing n and d . Note that which data

set we use only has a marginal effect on the measured time. For

consistency, we use instantiations of I for every estimator. Figure 5

graphs the results. As we can see, MWP is the second fastest after

MS. HiCS and CMI scale relatively well with n and d . There is a
second group formed by TC, II and UDS one order of magnitude

slower. However, II does not scale well with d . MAC is way behind

all others. One should note that the runtime ofMWP can be further

improved via parallelisation and prior indexing.

4.4 Discussion
Our study shows that MWP fulfils all our requirements. We have

comparedMWP to a range of multivariate (R1) and non-parametric

(R5) approaches. We have shown to which extent they are efficient

(R2), general-purpose (R3), interpretable (R6), sensitive (R7) and
robust (R8). Each approach, except MWP and MS, has at least one

unintuitive parameter (R4): TC and II require k ∈ N, CMI requires

Q ∈ N, MAC requires ϵ ∈ (0, 1), UDS requires β ∈ N, HiCS requires
α ∈ (0, 1). Next, only MWP and HiCS allow to trade accuracy for a

computational advantage (R9). Table 1 summarizes our findings.

All in all, MWP is a state-of-the-art estimator: It is versatile,

allowing quality-runtime trade-offs and parallelisation, which is

useful when time is critical, e.g., in large data streams. At the same

time, it shows excellent detection quality with no restriction on

the dependency type, while being easy to use and interpret. MWP

features a blend of properties that so far no competitor offers.

Table 1: Requirement fulfilment

Estimator R1 R2 R3 R4 R5 R6 R7 R8 R9
MS ✓ ++ ✗ ✓ ✓ ✓ ✗ ✓ ✗

TC ✓ - ✓ ✗ ✓ ✗ ✓ ✗ ✗

II ✓ -- ✗ ✗ ✓ ✗ ✗ ✗ ✗

CMI ✓ + ✗ ✗ ✓ ✗ ✗ ✗ ✗

MAC ✓ -- ✗ ✗ ✓ ✗ ✗ ✓ ✗

UDS ✓ - ✗ ✗ ✓ ✗ ✗ ✓ ✗

HiCS ✓ + ✓ ✗ ✓ ✗ ✗ ✗ ✓

MWP ✓ ++ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 CONCLUSIONS & OUTLOOK
In this paper, we have introduced MCDE, a framework to estimate

multivariate dependency, and its instantiation as MWP. We have

shown that MWP fulfils all the requirements one would expect

from a state-of-the-art dependency estimator. Compared to other

approaches, it provides high statistical power on a large panel of

dependencies, while being very efficient. Thus, MCDE/MWP is

particularly promising for correlation monitoring in data streams.

As future work, wewill study the deployment ofMCDE in stream-

ing scenarios. Our goal is to characterize the anytime flexibility
of MCDE by refining the bound presented in Theorem 2 via fur-

ther assumptions. It will also be interesting to consider different

instantiations of the statistical test, e.g., by comparing recent modi-

fications of the Mann-WhitneyU test, such as [7] and [3]. Finally,

the efficiency of MCDE in the streaming setting could be further

improved via efficient insert and delete index operations.

ACKNOWLEDGMENTS
This work was supported by the DFG Research Training Group

2153: ‘Energy Status Data – Informatics Methods for its Collection,

Analysis and Exploitation’ and the German Federal Ministry of

Education and Research (BMBF) via Software Campus (01IS17042).

REFERENCES
[1] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua

Bengio, R. DevonHjelm, andAaron C. Courville. 2018. Mutual InformationNeural

Estimation. In ICML (Proceedings of Machine Learning Research), Vol. 80. PMLR,

530–539. http://proceedings.mlr.press/v80/belghazi18a.html

[2] Richard E. Bellman. 1957. Dynamic Programming. Princeton University Press.

[3] Edgar Brunner and Ullrich Munzel. 2000. The Nonparametric Behrens-Fisher

Problem: Asymptotic Theory and a Small-Sample Approximation. Biometrical

journal 42, 1 (2000), 17–25. https://doi.org/10.1002/(SICI)1521-4036(200001)42:

1<17::AID-BIMJ17>3.0.CO;2-U

[4] Ming-Syan Chen, Jiawei Han, and Philip S. Yu. 1996. Data Mining: An Overview

from a Database Perspective. IEEE Trans. Knowl. Data Eng. 8, 6 (1996), 866–883.

https://doi.org/10.1109/69.553155

[5] Antonio Di Crescenzo and Maria Longobardi. 2009. On Cumulative Entropies.

Journal of Statistical Planning and Inference 139, 12 (2009), 4072–4087.

[6] Wilfrid J Dixon. 1954. Power Under Normality of Several Nonparametric Tests.

The Annals of Mathematical Statistics 25, 3 (1954), 610–614. https://www.jstor.

org/stable/2236846

[7] Michael A. Fligner and George E. Policello II. 1981. Robust Rank Procedures

for the Behrens-Fisher Problem. J. Amer. Statist. Assoc. 76, 373 (1981), 162–168.

https://doi.org/10.1080/01621459.1981.10477623

[8] Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf,

and Alexander J. Smola. 2007. A Kernel Statistical Test of Independence. In NIPS.

Curran Associates, Inc., 585–592. http://papers.nips.cc/paper/3201-a-kernel-

statistical-test-of-independence

[9] Mark A. Hall and Geoffrey Holmes. 2003. Benchmarking Attribute Selection

Techniques for Discrete Class Data Mining. IEEE Trans. Knowl. Data Eng. 15, 6

(2003), 1437–1447. https://doi.org/10.1109/TKDE.2003.1245283

7

http://proceedings.mlr.press/v80/belghazi18a.html
https://doi.org/10.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U
https://doi.org/10.1109/69.553155
https://www.jstor.org/stable/2236846
https://www.jstor.org/stable/2236846
https://doi.org/10.1080/01621459.1981.10477623
http://papers.nips.cc/paper/3201-a-kernel-statistical-test-of-independence
http://papers.nips.cc/paper/3201-a-kernel-statistical-test-of-independence
https://doi.org/10.1109/TKDE.2003.1245283

[10] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random

Variables. J. Amer. Statist. Assoc. 58, 301 (1963), 13–30. https://doi.org/10.1080/

01621459.1963.10500830

[11] Fabian Keller, Emmanuel Müller, and Klemens Böhm. 2012. HiCS: High Contrast

Subspaces for Density-Based Outlier Ranking. In ICDE. IEEE Computer Society,

1037–1048. https://doi.org/10.1109/ICDE.2012.88

[12] Justin B. Kinney and Gurinder S. Atwal. 2014. Equitability, mutual information,

and the maximal information coefficient. Proceedings of the National Academy of

Sciences 111, 9 (2014), 3354–3359. https://doi.org/10.1073/pnas.1309933111

[13] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. 2004. Estimating

mutual information. Phys. Rev. E 69 (Jun 2004), 066138. Issue 6. https://doi.org/

10.1103/PhysRevE.69.066138

[14] David López-Paz, Philipp Hennig, and Bernhard Schölkopf. 2013. The Ran-

domized Dependence Coefficient. In NIPS. Curran Associates, Inc., 1–9. http:

//papers.nips.cc/paper/5138-the-randomized-dependence-coefficient

[15] Henry B Mann and Donald R Whitney. 1947. On a Test of Whether one of

Two Random Variables is Stochastically Larger than the Other. The Annals of

Mathematical Statistics 18, 1 (1947), 50–60. https://www.jstor.org/stable/2236101

[16] William J. McGill. 1954. Multivariate information transmission. Trans. of the

IRE Professional Group on Information Theory (TIT) 4 (1954), 93–111. https:

//doi.org/10.1109/TIT.1954.1057469

[17] Alexander M. Mood. 1954. On the Asymptotic Efficiency of Certain Nonparamet-

ric Two-Sample Tests. The Annals of Mathematical Statistics 25, 3 (1954), 514–522.

https://www.jstor.org/stable/2236833

[18] Hoang Vu Nguyen, Panagiotis Mandros, and Jilles Vreeken. 2016. Univer-

sal Dependency Analysis. In SDM. SIAM, 792–800. https://doi.org/10.1137/

1.9781611974348.89

[19] Hoang Vu Nguyen, Emmanuel Müller, Jilles Vreeken, Pavel Efros, and Kle-

mens Böhm. 2014. Multivariate Maximal Correlation Analysis. In ICML (JMLR

Workshop and Conference Proceedings), Vol. 32. JMLR.org, 775–783. http:

//jmlr.org/proceedings/papers/v32/nguyenc14.html

[20] Hoang Vu Nguyen, Emmanuel Müller, Jilles Vreeken, Fabian Keller, and Klemens

Böhm. 2013. CMI: An information-theoretic contrast measure for enhancing

subspace cluster and outlier detection. SDM (2013), 198–206. https://doi.org/10.

1137/1.9781611972832.22

[21] David N. Reshef, Yakir A. Reshef, Hilary K. Finucane, Sharon R. Grossman, Gilean

McVean, Peter J. Turnbaugh, Eric S. Lander, Michael Mitzenmacher, and Pardis C.

Sabeti. 2011. Detecting Novel Associations in Large Data Sets. Science 334, 6062

(2011), 1518–1524. https://doi.org/10.1126/science.1205438

[22] Friedrich Schmid and Rafael Schmidt. 2007. Multivariate extensions of Spearman’s

rho and related statistics. Statistics & Probability Letters 77, 4 (2007), 407–416.

https://doi.org/10.1016/j.spl.2006.08.007

[23] Erich Schubert, Alexander Koos, Tobias Emrich, Andreas Züfle, Klaus Arthur

Schmid, and Arthur Zimek. 2015. A Framework for Clustering Uncertain Data.

PVLDB 8, 12 (2015), 1976–1979. https://doi.org/10.14778/2824032.2824115

[24] Charles Spearman. 1904. The Proof and Measurement of Association between

Two Things. The American Journal of Psychology 15, 1 (1904), 72–101. https:

//doi.org/10.2307/1412159

[25] Gábor J. Székely and Maria L. Rizzo. 2009. Brownian Distance Covariance. Ann.

Appl. Stat. 3, 4 (2009), 1236–1265. https://doi.org/10.1214/09-AOAS312

[26] Nicholas Timme, Wesley Alford, Benjamin Flecker, and John M. Beggs. 2014.

Synergy, Redundancy, and Multivariate Information Measures: An Experimental-

ist’s Perspective. Journal of Computational Neuroscience 36, 2 (2014), 119–140.

https://doi.org/10.1007/s10827-013-0458-4

[27] Satosi Watanabe. 1960. Information Theoretical Analysis of Multivariate Cor-

relation. IBM Journal of Research and Development 4, 1 (1960), 66–82. https:

//doi.org/10.1147/rd.41.0066

[28] Yunyue Zhu and Dennis E. Shasha. 2002. StatStream: Statistical Monitoring of

Thousands of Data Streams in Real Time. In VLDB. Morgan Kaufmann, 358–369.

http://dl.acm.org/citation.cfm?id=1287369.1287401

A FORMAL PROOFS
A.1 Lemma 1

Lemma 1. The independence assumption A of a subspace S holds

if and only if the joint pdf for all S ′ ∈ P(S) is equal to its joint

conditional pdf given all other variables S \ S ′:

A(S) ⇔ p(XS ′ |XS ′) = p(XS ′) ∀S ′ ∈ P(S) (3)

Proof. Since all variables in S are mutually independent, for

any subspace S ′ ∈ P(S) we also have p(XS ′) =
∏

si ∈S ′ psi (X):

A(S) ⇔ p(X) =
∏
si ∈S

psi (X)

A(S) ⇔ p(X) = p(XS ′) ∗
∏

si ∈S\S ′
psi (X) ∀S ′ ∈ P(S)

A(S) ⇔
p(X)

p(XS ′)
= p(XS ′) ∀S ′ ∈ P(S)

By the definition of the conditional pdf :

A(S) ⇔ p(XS ′ |XS ′) = p(XS ′) ∀S ′ ∈ P(S) □

A.2 Lemma 2
Lemma 2 (Independence Assumption Relaxation). A(S) ⇒

A∗(S), i.e., we can relax A into A∗ for any subspace S .

Proof. Using Lemma 1:

A(S) ⇔ p(XS ′ |XS ′) = p(XS ′) ∀S ′ ∈ P(S)
A(S) ⇒ p(XS1 |XS1) = p(XS1) ∀S1 ∈ P(S) : |S1 | = 1

A(S) ⇒ psi (X |Xsi) = psi (X) ∀si ∈ S □

A.3 Lemma 3
Lemma 3 (A∗ and Conditional Distributions).

A∗(S) ⇔ psi |ci = psi ∀si ∈ S,∀ci ∈ Pc (S) (8)

Proof. By contradiction, using Lemma 2.

‘⇐’: From Lemma 2, assume A∗(S) and that

∃sj ∈ S : psj (X |X j) , psj

⇒ ∃c j ∈ Pc (S) : psj |c j , psj

⇒ Contradiction of Lemma 3

‘⇒’: From Lemma 3, assume A∗(S) and that

∃sj ∈ S,∃c j ∈ Pc (S) : psj |c j , psj

⇒ psj (X |Xsj) , psj
⇒ Contradiction of Lemma 2 □

A.4 Theorem 1
Theorem 1 (A∗ and Complementary Conditions).

A∗(S) ⇔ psi |c̄i = psi |ci ∀si ∈ S,∀ci ∈ Pc (S) (10)

Proof. By contradiction, using Lemma 3.

‘⇐’: From Lemma 3, assume A∗(S) and that

∃sj ∈ S,∃c j ∈ Pc (S) : psj |c j , psj

since psj = psj |c j∪c̄ j ,

⇒ ∃sj ∈ S,∃c j ∈ Pc (S) : psj |c j , psj |c j∪c̄ j

⇒ ∃sj ∈ S,∃c j ∈ Pc (S) : psj |c j , psj |c̄ j
⇒ Contradiction of Theorem 1

‘⇒’: From Theorem 1, assume A∗(S) and that

∃sj ∈ S,∃c j ∈ Pc (S) : psj |c j , psj |c̄ j

⇒ ∃sj ∈ S,∃c j ∈ Pc (S) : psj |c j∪c j , psj |c̄ j∪c j

since c j ∪ c j = c j and psj = psj |c̄ j∪c j ,

⇒ ∃sj ∈ S,∃c j ∈ Pc (S) : psj |c j , psj

⇒ Contradiction of Lemma 3 □

8

https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1109/ICDE.2012.88
https://doi.org/10.1073/pnas.1309933111
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
http://papers.nips.cc/paper/5138-the-randomized-dependence-coefficient
http://papers.nips.cc/paper/5138-the-randomized-dependence-coefficient
https://www.jstor.org/stable/2236101
https://doi.org/10.1109/TIT.1954.1057469
https://doi.org/10.1109/TIT.1954.1057469
https://www.jstor.org/stable/2236833
https://doi.org/10.1137/1.9781611974348.89
https://doi.org/10.1137/1.9781611974348.89
http://jmlr.org/proceedings/papers/v32/nguyenc14.html
http://jmlr.org/proceedings/papers/v32/nguyenc14.html
https://doi.org/10.1137/1.9781611972832.22
https://doi.org/10.1137/1.9781611972832.22
https://doi.org/10.1126/science.1205438
https://doi.org/10.1016/j.spl.2006.08.007
https://doi.org/10.14778/2824032.2824115
https://doi.org/10.2307/1412159
https://doi.org/10.2307/1412159
https://doi.org/10.1214/09-AOAS312
https://doi.org/10.1007/s10827-013-0458-4
https://doi.org/10.1147/rd.41.0066
https://doi.org/10.1147/rd.41.0066
http://dl.acm.org/citation.cfm?id=1287369.1287401

A.5 Theorem 2
Theorem 2 (Hoeffding’s Bound of

ˆC).

Pr

(
| ˆC − C| ≥ ε

)
≤ 2e−2Mε2

(13)

whereM is the number of MC iterations, and 0 < ε < 1 − C.

Proof. Let us first restate Theorem 1 from Hoeffding [10]:

Let X1,X2, . . . ,Xn be independent random variables 0 ≤ Xi ≤ 1

for i ∈ {1, . . . ,n} and let X̄ = 1

n (X1 +X2 + · · · +Xn) be their mean

with expected value E[X̄]. Then, for 0 < t < 1 − E[X̄]:

Pr

(
X̄ − E[X̄] ≥ t

)
≤ e−2nt 2

Pr

(
X̄ − E[X̄] ≤ t

)
≤ e−2nt 2

(14)

We can treat each MC iteration m1,m2, . . . ,mM as i.i.d. random

variables Xm1
,Xm2

, . . . ,XmM in [0, 1] with mean
ˆC and expected

value E[ˆC] = C (cf. Definition 8). Thus, for 0 < ε < 1 − C, we have

Pr(| ˆC − C| ≥ ε) ≤ 2e−2Mε2

. □

B ALGORITHMS
B.1 Pseudo-code for the Index Construction
We outline the construction of the index in Algorithm 2. The

index I is a one-dimensional structure containing the adjusted

ranks and tying values corrections for each dimension. It con-

sists of |S | elements {I1, . . . , I |S |}, where Ii is an array of 3-tuple

[(l i
1
,ai

1
,bi

1
), . . . , (l in ,a

i
n ,b

i
n)] ordered by si in ascending order. In this

tuple, l i are the row numbers of the values of si , a
i
are the adjusted

ranks and bi the accumulated correction term of the standard devi-

ation σ . We denote Ii [j], si [j] as the j-th elements of Ii and si ; we
refer to the components of Ii [j] as l

i
j , a

i
j , b

i
j .

For each attribute si , we sort the values (Line 3) and perform a

single pass over the sorted list to adjust the ranks and the correction

of the standard deviation for ties. Thus, the index construction

complexity is in O(|S | · (n · loд(n) + n)).

Algorithm 2 ConstructIndex(S = {si }i ∈{1, ...,d })

1: for i = 1 to |S | do
2: r i ← [0, . . . ,n − 1]

3: l i ← sort r i by si in ascending order

4: Ii ←
[
(l i

1
, r i

1
), . . . , (l in , r

i
n)
]

5: j ← 1 ; correction ← 0

6: while j ≤ n do
7: k ← j ; t ← 1 ; adjust ← 0

8: while (k < n − 1) ∧ (si [l
i
k] = si [l

i
k+1
]) do

9: adjust ← adjust + r ik
10: increment k and t
11: if k > j then
12: adjusted ← (adjust + r ik)/t

13: correction ← correction + t3 − t
14: form ← j to k do
15: Ii [m] ← (l

i
m ,adjusted, correction)

16: else
17: Ii [j] ← (l

i
j , r

i
j , correction)

18: j ← j + t
19: return I : {I1, . . . , I |S |} with Ii : (l i ,ai ,bi)

B.2 Pseudo-code for Slicing
Algorithm 3 is the pseudo-code of the slicing process. We can slice

the input data efficiently, because the tuples are already sorted in

the index structure. We successively mask the row numbers based

on a random condition for all but one reference attribute sr . Since
we visit each value at most once, the complexity is in O(|S | · n).

Algorithm 3 Slice(I : {I1,I |S |}, r)

1: slice ← Array of n boolean values initialized to true

2: slicesize ←
⌈
n · |S |−1

√
α
⌉

3: for Ii ∈ I \ Ir do
4: start ← random integer in [1,n − slicesize]
5: end ← start + slicesize
6: for j ← 1 until start and end + 1 to n do
7: slice[l ij] ← false

8: return slice

B.3 Pseudo-code for the Statistical Test
Algorithm 4 is our approach to compute the statistical test. We

determine a restriction [start , end] on sr and sum the adjusted

ranks of the objects that belong to the slice. Thanks to the marginal

restriction, we compute the statistical test in a subsample of size

n′ < n. Since the ranks in this subset may not start from 0, we adjust

the sum of the ranks R1 (Line 10). Then, we compute a correction

term (Line 13) using the cumulative correction br to adjust σ for

ties (Line 14). Φ1/2
is the cumulative distribution function of the

half-Gaussian distribution. We compute the statistical test via a

single pass, considering only elements between start and end . Each
operation requires constant time, so the complexity is in O(n).

Algorithm 4 U-test(I : {I1,I |S |}, slice, r)

1: start ← random integer in [1,n · (1 − α)]
2: end ← start + ⌈n · α⌉
3: R1 ← 0 ; n1 ← 0

4: for j ← start to end do
5: if slice[lrj] = true then
6: R1 ← R1 + a

r
j

7: n1 ← n1 + 1

8: n′ ← end − start
9: if n1 = 0 or n1 = n

′ then
10: return 1

11: U1 ← R1 − start · n1

12: n2 ← n′ − n1

13: µ ← (n1 · n2)/2

14: correction ← (brend−1
− brstar t−1

)/(n′ · (n′ − 1))

15: σ ←
√
((n1 · n2)/12) · (n′ + 1 − correction)

16: return Φ1/2(|U1 − µ |/σ)

B.4 Pseudo-code for Dependency Generation
We show in Algorithm 5 to 15 how to generated-dimensional points

for each dependency displayed in Figure 2.U[a,b] stands for the
uniform distribution over the interval [a,b], N(µ,σ) refers to the

9

normal distribution with mean µ and standard deviation σ and

B(µ) is a Bernoulli experiment with parameter µ. Let the notation
x ←U[a,b] means drawing a value randomly fromU[a,b].

Since each points p are generated independently from each

other, it is enough to run the procedure n times to generate a d-
dimensional data set with n points for a given dependency. Note

that each dependency generator are scaled to [0, 1]. We package our

algorithms for data generation as an independent GitHub project
2
.

Algorithm 5 Cross(d)

1: x ←U[0, 1] ; p ← (x)
2: for j ← 2 to d do
3: if B(0.5) = 0 then p ← p ∪ (x)
4: else p ∪ (1 − x)
5: return p

Algorithm 6 DoubleLinear(d)

1: x ←U[0, 1] ; p ← (x)
2: for j ← 2 to d do
3: if B(0.5) = 0 then p ← p ∪ (x)
4: else p ← p ∪ (x ∗ 0.25)

5: return p

Algorithm 7 HourGlass(d)

1: x ←U[0, 1] ; p ← (x)
2: for j ← 2 to d do
3: y ← random integer in [1, 4]

4: if y = 1 then p ← p ∪ (x)
5: else if y = 2 then p ← p ∪ (1 − x)
6: else if y = 3 then p ← p ∪ (0)
7: else p ← p ∪ (1)
8: return p

Algorithm 8 HyperCube(d)

1: flag← random integer in [1,d] ; p ← ()
2: for j ← 1 to d do
3: if j = flag then p ← p ∪ (B(0.5))
4: else p ← p ∪ (U[0, 1])
5: return p

C EXPERIMENTS
C.1 Details on the Statistical Power

Definition 11 (Power). The power of an estimator E w.r.t. X
with σ , n and d is the probability of the score of E to be larger than a

γ -th percentile of the scores w.r.t. I:

Pr

(
E

(
InstX,σn×d

)
>
{
E

(
Inst I,0n×d

)}Pγ)
(15)

2
https://github.com/edouardfouche/DataGenerator

Algorithm 9 HyperCubeGraph(d)

1: flag← random integer in [1,d] ; p ← ()
2: for j ← 1 to d do
3: if j = flag then p ← p ∪ (U[0, 1])
4: else p ← p ∪ (B(0.5))
5: return p

Algorithm 10 HyperSphere(d)
* The procedure used here is known as Marsaglia’s algorithm (1972)

1: r ← 0 ; p ← ()
2: for j ← 1 to d do
3: v ← N(0, 1)
4: p ← p ∪ (v)
5: r ← r +v2

6: for j ← 1 to d do p(j) ← p(j)/r2 + 0.5

7: return p

Algorithm 11 Linear(d)

1: x ←U[0, 1] ; p ← (x)
2: for j ← 2 to d do p ← p ∪ (x)
3: return p

Algorithm 12 Parabolic(d)

1: x ←U[−1, 1] ; t ← (1) ; p ← (x)
2: for j ← 2 to d do
3: p ← p ∪

∑
[p]2 ; t ← t ∪

∑
[t]2

4: for j ← 1 to d do p(j) ← p(j)/t(d)
5: return p

Algorithm 13 Sine(d, P)
∗P is the number of periods of the sinusoid

1: x ←U[0, 1] ; p ← (x)
2: for j ← 2 to d do p ← p ∪ (sin(

∑
[p]) ∗ 2π ∗ P) + 1)/2

3: return p

Algorithm 14 Star(d)

1: x ←U[0, 1] ; p ← (x)
2: for j ← 2 to d do
3: if B(0.5) = 0 then p ← p ∪ (x)
4: else p ← p ∪ (1 − x)
5: if B(0.5) = 0 then
6: flag← random integer in [1,d]
7: p(flag) ← 0.5

8: return p

Algorithm 15 Zinversed(d)

1: x ←U[0, 1] ; p ← (x)
2: for j ← 2 to d do
3: y ← random integer in [1, 3]

4: if y = 1 then p ← p ∪ (x)
5: else if y = 2 then p ← p ∪ (0)
6: else p ← p ∪ (1)
7: return p

10

https://github.com/edouardfouche/DataGenerator

InstX,σn×d is a random instantiation of a subspace as dependency

X with noise level σ , which has n objects and d dimensions. {x}Pγ

stands for the γ -th percentile of the set {x}, i.e., a value v such that

γ% of the values in {x} are smaller than v .
Note that, since the attributes of I are independent, adding noise

does not have any effect on dependence, so we set noise to 0 when

instantiating I. To estimate the power, we draw two sets of 500

estimates from X, σ and I respectively:

ΣEX,σ :

{
E

(
InstX,σn×d

)}
500

i=1

ΣEI :

{
E

(
Inst I,0n×d

)}
500

i=1

Then, we count the elements in ΣEX,σ greater than

{
ΣEI

}Pγ
:

powerX,σn×d,γ (E) =

���{x : x ∈ ΣEX,σ ∧ x >
{
ΣEI

}Pγ }���
500

One can interpret power as the probability to correctly reject the
independence hypothesis with γ% confidence. In other words, the

power quantifies how well a dependency measure, such as MWP,

can differentiate between the independence I and a given depen-

dency X with noise level σ . For our experiments, we choose γ = 95.

In the case of II, values can be negative or positive, depending on

whether the dependency is a ‘synergy’ or a ‘redundancy’. For II, we

measure power using the absolute value of its score.

C.2 Influence of size n and parameterM
Figure 6 shows that power globally increases with n, but it is still
high for most dependencies with low n, provided noise is moderate.

As we can see, the average score of MWP tends to increase with

n, which explains the gain in power. In fact, that is because MWP

is sensitive (R7), as we discuss in Section C.4. Similarly, power

increases slightly asM increases, but the effect is visible only for S5
and Zi. This increase of power is easily explained by the fact that

the standard deviation of MWP decreases, which is what Theorem

2 predicted: with more iterations, the values concentrate around C.

In the end, we see thatMWP is already useful for small n or small

M , even though more iterations or more data samples yield higher

power when data is noisy.

C.3 Influence of dimensionality d
Figure 7 graphs the evolution of MWP for d = 2, 3, 5. As we see,

the average MWP decreases gradually for each dependency. The

same level of noise does not seem to affect each estimate equally,

also regarding dimensionality. For instance, the estimates of L, P
and S1 are larger at d = 2. While the estimates of Hc, HcG, P and

Zi decrease with increasing d , they increase for C and St.
The standard deviation of MWP increases with noise and de-

creases with d . In particular, L, C and Hs have a low standard

deviation. This means that fewer iterations are in fact required to

estimate stronger dependencies.

The statistical power does not seem to vary much with dimen-

sionality for most dependencies. It decreases with d for Hc, HcG,
Hs, P and Zi, while it increases for C, S5 and St.

All in all, each dependency yields a score larger than the inde-

pendence I up to a certain level of noise, leading to high power.

This indicates that MWP is general-purpose (R3).

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

av
g

n = 100 n = 200 n = 500 n = 1000

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

st
d

0 0.2 0.4 0.6 0.8 1

σ

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

p
ow

er

0 0.2 0.4 0.6 0.8 1

σ
0 0.2 0.4 0.6 0.8 1

σ
0 0.2 0.4 0.6 0.8 1

σ

0.5

0.6

0.7

0.8

0.9

1.0

0.00

0.02

0.04

0.06

0.08

0.10

0.0

0.2

0.4

0.6

0.8

1.0

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

av
g

M = 10 M = 50 M = 200 M = 500

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

st
d

0 0.2 0.4 0.6 0.8 1

σ

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

p
ow

er

0 0.2 0.4 0.6 0.8 1

σ
0 0.2 0.4 0.6 0.8 1

σ
0 0.2 0.4 0.6 0.8 1

σ

0.5

0.6

0.7

0.8

0.9

1.0

0.00

0.02

0.04

0.06

0.08

0.10

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Power ofMWP w.r.t. n andM

11

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

av
g

d = 2 d = 3 d = 5

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

st
d

0 0.2 0.4 0.6 0.8 1

σ

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

p
ow

er

0 0.2 0.4 0.6 0.8 1

σ
0 0.2 0.4 0.6 0.8 1

σ

0.5

0.6

0.7

0.8

0.9

1.0

0.00

0.02

0.04

0.06

0.08

0.10

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7:MWP w.r.t. dimensionality d

C.4 Sensitivity
R7 states that estimators should reflect the strength of the observed

effect w.r.t. the number of observations. Figure 8 graphs the aver-

age score from 500 instances of each dependency with a minimal

noise of 1/30. The average of MWP obtained for each dependency

converges to 1 consistently with more samples, except for I, which
stabilizes around 0.5. This means that MWP is sensitive (R7).

TC behaves similarly toMWP. However, it is not bounded. While

the scores of II seem to increase with sample size, they decrease in

terms of absolute value. MS is insensitive to changes of sample size.

HiCS, UDS, MAC and CMI behave antagonistically: Their scores

tends to go down as the sample size increases, even in the case of

I. This implies that their minimum or maximum score varies with

the sample size, highlighting also interpretability (R6) problems.

C.5 Robustness
We simulate data imperfections by discretising a 3-dimensional

linear dependency into a number ω of discrete values from 100

to 1. With only one value, the space is completely redundant, i.e.,

its contrast should be minimal. We compare the power of MWP

and of the other approaches against L and I for different levels
of discretisation. Since TC and II rely on a nearest neighbours

algorithm, they fail when the same observation is present more

than k times, i.e., they are by design not robust; we exclude them

from the analysis. Figure 9(a) displays the results.

0.6

0.8

1.0
MWP

C

Dl

H

Hc

HcG

Hs

L

P

S1

S5

St

Zi

I

0

2

4

TC

−2

−1

0

II

0.1

0.2

0.3

0.4

HiCS

200 500 1000

n

0.0

0.5

1.0
MS

200 500 1000

n

0.0

0.2

0.4

0.6

UDS

200 500 1000

n

0.25

0.50

0.75

MAC

200 500 1000

n

0.0

0.2

0.4

CMI

Figure 8: Average score w.r.t. n, σ = 1/30

1

3

5

10

50

100

I

MWP HiCS MS UDS MAC CMI

0 ← σ → 1

1

3

5

10

50

100

L

0 ← σ → 1 0 ← σ → 1 0 ← σ → 1 0 ← σ → 1 0 ← σ → 1
0.0

0.2

0.4

0.6

0.8

1.0

(a) Power

1

3

5

10

50

100

I

MWP HiCS MS UDS MAC CMI

0 ← σ → 1

1

3

5

10

50

100

L

0 ← σ → 1 0 ← σ → 1 0 ← σ → 1 0 ← σ → 1 0 ← σ → 1
0.0

0.2

0.4

0.6

0.8

1.0

(b) Average

Figure 9: Power and average score w.r.t. ω

HiCS yields high power in the case of discrete values, even for I.
Thus, HiCS is not robust. Also, the power of CMI wrongly increases

as we add noise to I, provided that ω ≥ 10. This is why the power

of CMI is high for every dependency in Figure 4. CMI rejects the

independence for independent spaces, i.e., it is not robust. On the

other hand, MWP, MS, UDS and MAC seem robust (R8).
In Figure 9(b), we see that the score of CMI tends to increase

slightly for I as we add noise, whenever ω > 5. Also, the score of

HiCS increases for both I and L when ω ≤ 5.MAC converges to 0.4

as noise increases for ω > 10. On the other hand, MWP converges

to 0 as the space becomes discrete. This is an interesting feature

of our estimator: discrete spaces are of lower interested, since the

notion of contrast is not clearly defined there. It allows analysts to

draw a line between discrete and real-valued attributes.

12

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	3 The MCDE Framework
	3.1 Notation
	3.2 Theory of MCDE
	3.3 Instantiation as MWP
	3.4 Algorithmic Considerations & Complexity

	4 Evaluation
	4.1 Methodology
	4.2 Score Distribution and Statistical Power
	4.3 Scalability
	4.4 Discussion

	5 Conclusions & Outlook
	Acknowledgments
	References
	A Formal Proofs
	A.1 Lemma 1
	A.2 Lemma 2
	A.3 Lemma 3
	A.4 Theorem 1
	A.5 Theorem 2

	B Algorithms
	B.1 Pseudo-code for the Index Construction
	B.2 Pseudo-code for Slicing
	B.3 Pseudo-code for the Statistical Test
	B.4 Pseudo-code for Dependency Generation

	C Experiments
	C.1 Details on the Statistical Power
	C.2 Influence of size n and parameter M
	C.3 Influence of dimensionality d
	C.4 Sensitivity
	C.5 Robustness

