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Abstract. Outlier detection is an important field in data mining. For
high-dimensional data the task is particularly challenging because of the
so-called “curse of dimensionality”: The notion of neighborhood becomes
meaningless, and points typically show their outlying behavior only in
subspaces. As a result, traditional approaches are ineffective. Because of
the lack of a ground truth in real-world data and of a priori knowledge
about the characteristics of potential outliers, outlier detection should be
considered an unsupervised learning problem. In this paper, we examine
the usefulness of unsupervised artificial neural networks – autoencoders,
self-organising maps and restricted Boltzmann machines – to detect out-
liers in high-dimensional data in a fully unsupervised way. Each of those
approaches targets at learning an approximate representation of the data.
We show that one can measure the “outlierness” of objects effectively, by
measuring their deviation from the learned representation. Our experi-
ments show that neural-based approaches outperform the current state
of the art in terms of both runtime and accuracy.
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1 Introduction

Outliers are objects that deviate significantly from others as to arouse the suspi-
cion that a different mechanism has generated them [17]. The search for outliers
has interested researchers and practitioners for many years, with applications
such as the detection of fraud or intrusions, and medical diagnosis.

In real-world use cases, the characteristics of outliers are unknown before-
hand. One can only obtain a ground truth with the help of domain experts, who
produce explicit labels on the nature of data points. However, generating this
ground truth is costly or even impossible. In high-dimensional spaces in particu-
lar, objects can be outlying in unexpected ways, which the expert does not notice
during inspection. For example, in aircraft fault diagnostics, thousands of sen-
sors collect huge amounts of in-flight data. The sensors not only collect airplane
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data (accelerometer, speed sensor, voltage sensors, etc.) but also environmental
or weather data (thermocouple, pressure sensors, etc.) [43]. Since the space of all
valid sensor-value combinations is unknown a priori, it is impossible to discern
between normal and abnormal instances. Thus, one cannot train a classifier in
a supervised way, or even obtain a set of instances labelled as “normal”. The
absence of training data results in a fully unsupervised learning problem.

When the data is high-dimensional, i.e., has hundreds of dimensions, tra-
ditional outlier detectors do not work well at all. This is due to a number of
effects summarized as the “curse of dimensionality” [3,4]. There exists a number
of outlier detectors, which are robust against high dimensionality: ABOD and
FastABOD [30] use the angle between data objects as a deviation measure. HiCS
[24] and approaches by Aggarwal et al. [1], Kriegel et al. [29], Müller et al. [36]
and Nguyen et al. [38,39] propose to assess the outlierness of data points only in
low-dimensional projections of the full space. While these approaches do solve
the problem in high-dimensional spaces to some extent, they often come with
high computational complexity and unintuitive parameters.

Several studies propose to use artificial neural networks (ANNs) for out-
lier detection [23,37,18,15,10,34,9]. However, these studies have only considered
relatively low-dimensional settings, i.e., fewer than 100 dimensions. Thus, the
performance of these approaches in high-dimensional spaces is so far unknown.
Next, they often treat outlier detection as a supervised or semi-supervised prob-
lem, which contradicts our view on it as unsupervised.

According to Bishop [5], discrepancies between the data used for training
and testing is one of the main factors leading to inaccurate results with neural
networks. ANN-based outlier detection approaches make use of this erroneous
behavior on novel data, interpreting the deviations from the expected results –
or “errors” – of the neural networks as an indication for “outlierness”. The idea
is to train the network to learn a good representation of the majority of the data
objects. Since outliers are assumed to be “few and different”[33], the hypothesis
is that they do not fit the representation learned by the model. Thus, one can
detect them by measuring the respective error of the neural network.

To our knowledge, this study is the first to describe and compare the specifics
of a range of ANN models for such an unsupervised detection of outliers in
high-dimensional spaces, together with an extensive empirical evaluation. We
articulate our contributions as follows:

– We describe the principles of three unsupervised ANN-based ap-
proaches for outlier detection, either based on autoencoders (AEs), self-
organizing maps (SOMs) or restricted Boltzmann machines (RBMs).

– We study the effects of different parameter settings for the ANN-
based approaches empirically. Based on this evaluation, we recommend
parameter values to tune each approach for the outlier detection task.

– We compare our approaches to state-of-the-art outlier detectors,
using 26 real-world data sets. The results show a significantly better
detection quality of AE and SOM on most data sets for a reduced runtime.
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– We release our implementation on GitHub1, to ensure the reproducibil-
ity of the experiments and further use of the algorithms.

Paper outline: Section 2 features the related work. Section 3 presents our
adaption of three families of ANNs for outlier detection. Section 4 is our evalu-
ation. Section 5 summarizes our results and possible further research questions.

2 Related Work

2.1 High-Dimensional Outlier Detection

Numerous approaches exist to detect outliers in high-dimensional spaces. One
can classify them as density-based [1,36], deviation-based [29,35], distance-based
[38] or angle-based [30]. Other approaches, such as Isolation Forest [33], use
decision tree ensembles to identify outliers. Alternatively, HiCS [24] decouples
the search for subspaces from the actual outlier ranking.

Although methods explicitly targeting at high-dimensional data yield better
results than most traditional methods, they come with certain drawbacks. First,
most methods have high computational complexity and therefore do not scale
well to large data sets. Second, each of these detectors requires at least one
parameter, and the detection quality strongly depends on the parameter values
for a given data set, as observed in [8]. There is little or no indication on how
to choose suitable parameter values for these detectors. We in turn provide
recommendations for suitable values for the approaches we investigate.

As an example, the time complexity of the original ABOD algorithm is in
O(n3), which is not efficient with large data sets [30]. Even though there exists a
faster version, FastABOD [30], with complexity in O(n2 + nk2), the complexity
remains quadratic with the number of objects, and determining a “good” value
for parameter k is not straightforward.

2.2 ANNs for Outlier Detection

There also exists a number of approaches based on artificial neural networks.
Japkowicz et al. [23] and Hawkins et al. [18] propose approaches based on the
Autoencoder, sometimes named Replicator Neural Network. The work was fol-
lowed by [12,34,9]. Muñoz and Muruzábal [37] were the first to propose an ap-
proach based on SOM and Sammon’s mapping [45]. Fiore et al. [15] use the
RBM to detect outliers in a semi-supervised way, as well as [10]. However, each
of these contributions has at least one of the following issues:

– Low-dimensional: The evaluation of the approach is restricted to data
with few dimensions, i.e., typically less than 100.

– (Semi-)supervised: Outlier detection operates only in a supervised or
semi-supervised way, so that the unsupervised setting remains unaddressed.

1 https://github.com/Cognitana-Research/NNOHD
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– Specialized: The approach is tailored to a specific scenario, such as time
series, or assumes the availability of prior knowledge, i.e., it is not applicable
to the general outlier detection problem.

To our knowledge, the effectiveness of ANNs for general outlier detection is
unknown so far in high-dimensional spaces under the unsupervised setting. In
this work we correct this and compare ANN-based models to the state-of-the-art.

3 ANN-based Approaches

3.1 Requirements & General Idea

Any method mentioned in Section 2 comes with at least one disadvantage for
high-dimensional outlier detection. Given this, we formulate requirements on
new methods for the detection of outliers in high-dimensional spaces:

– R1: Accuracy. Superior outlier detection results in high-dimensional spaces,
compared to existing approaches.

– R2: Runtime. Low computational burden, which allows the deployment of
the method on high-dimensional data.

– R3: Parameterization. Small range of possible parameter values. Ide-
ally, one should be able to derive default parameter values for high outlier-
detection quality or recommendations for parameter-value selection a priori.

We show that ANN-based models fulfill these requirements. We only consider
unsupervised ANN models and focus on the three main families: autoencoders
(AEs), self-organizing maps (SOMs), and restricted Boltzmann machines (RBMs).

Unsupervised approaches have in common that they learn a representation of
the data. One can measure the deviation of each object from this representation
and use it as a score of the “outlierness” of this object. The implicit assumption
here is that outliers are “few and different”, so that they do not fit the learned
representation and have a greater outlier score OS:

OS(xinlier) < OS(xoutlier) (1)

This score in turn determines a “confidence” that a given point x is an
outlier: The higher the score, the higher this confidence. Note that, as a standard
preprocessing step, one may scale the values of each dimension for each data set
to [0, 1]. This limits the effect of different scales in different dimensions.

3.2 Autoencoder

Model Description The autoencoder (AE) is a multi-layer neural network
that learns a lower-dimensional representation of a data set, from which this
data can be reconstructed approximately [6,21]. To achieve this, the AE has an
input and an output layer, with a number of neurons n that matches the number
of dimensions in the data set, and one or more hidden layers with different
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numbers of neurons mi, mi 6= n. It is a combination of an encoder part that
transforms the data into a representation called the code and a decoder part
that transforms the code back to the original data space. Figure 1(a) graphs the
typical AE architecture.

In general, no transformation exists that leads to a perfect reconstruction of
all data objects. As a result, the output of the AE is an approximate reconstruc-
tion of the input data.

i1 i2 in

h1 h2 hm...

...

o1 o2 on...

Decoder

Encoder

(a) AE Architecture

kp1 kp2 kpq...

k11 k12 k1q...

k21 k22 k2q...

... ... ...

(b) SOM Architecture

v1 v2 vn

h1 h2 hm...

...

(c) RBM Architecture

Fig. 1. ANN Architectures

The encoder and decoder can be represented as functions y = e(x) and
x̂ = d(y) with x, x̂ ∈ Rn, y ∈ Rm, which are learned in order to minimize the
sum of the squared error of the reconstruction

argmine,d‖x− d (e(x))‖2 (2)

Our Outlier Detection Approach For the outlier detection we use an AE
with one hidden layer using the so-called ReLU activation function [16] for the
hidden layer, and the sigmoid activation function for the output layer. Such
a design choice is considered standard, as it alleviates the so-called vanishing
gradient problem [22] and gives way to fast computation [31].

The number of neurons in the hidden layer is set to a fraction of the number
of dimensions in the data set examined. We call this parameter the encoding
factor ε. Learning the weights of the model is done via the widely-known back-
propagation algorithm [25,32], with the AdaDelta gradient optimizer [51], in a
number ne of training epochs. Since the data is scaled to [0, 1], we use the binary
cross entropy loss function [44] between the input i and the output o, defined as

l(i,o) = −(i ln o + (1− i) ln (1− o)) (3)

As stated above, the AE learns an approximated reconstruction of the input
data. The expectation is that the reconstruction of “abnormal” objects will be
less accurate than for “normal” objects. We use the outlier score OSAE of an
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object x as the Euclidean distance between its actual values xj and its recon-
struction x̂j , similarly as in [18]:

OSAE(x) =

n∑
j=1

√
(xj − x̂j)2 (4)

3.3 Self-Organising Maps

Model Description A Self-Organising Map (SOM), also known as Kohonen
network, is an ANN traditionally used for dimensionality reduction and visual-
ization of high-dimensional data [26,27]. It is a projection from an n-dimensional
set of data objects to a low-dimensional, usually two- or three-dimensional, grid.
A neuron with an n-dimensional weight vector is associated with each node in
the grid. In the two-dimensional case, the SOM consists of a p × q neuron ma-
trix with neurons described by their weights wij , i ∈ {1, . . . , p}, j ∈ {1, . . . , q}.
Figure 1(b) illustrates the architecture of a SOM.

Training using a n-dimensional data set X = {x1, . . . , xm} consists of ne

epochs with m training steps per epoch, in total T = ne ∗m training steps. We
let wij(t) denote the weight vectors after the tth training step, wij(0) the initial
weight vectors, α(t) a learning rate decreasing with t and hij,cd(t) a neighborhood
function for neurons wij and wcd, instantiated as a smoothing kernel whose width
decreases with t. We use a Gaussian neighborhood kernel.

Training the SOM is done by finding for each data object xk the neuron that
has the closest distance, usually the Euclidean distance, to this data object, also
called the best matching unit (BMU), and updating the weight vector of each
neuron as follows:

wij(t+ 1) = wij(t) + α(t)hij,cd(t)(xk − wij(t)) (5)

So the weight vectors of the BMU and its neighboring neurons in the grid are
moved closer to the data object, and we repeat this process iteratively.

Our Outlier Detection Approach Our approach is based on the idea that
the trained SOM forms a map that is adjusted to the majority of data objects.
Outliers are assumed to be located farther away from their BMUs than inliers.

As is common in the literature, we use a 2-dimensional SOM with n rows
and columns, where n is called the topology size. We initialize the weights by
selecting the first two subspaces spanned by the first two eigenvectors of the
correlation matrix, as in [11,2].

The number of training epochs ne is a parameter that has an effect on out-
lier detection quality. The outlier score for the SOM, OSSOM, is the Euclidean
distance of a data object to its BMU. We refer to the BMU for object x as bmux.

OSSOM(x) =

n∑
j=1

√
(xj − bmuxj )2 (6)



Unsupervised ANNs for Outlier Detection in High-Dimensional Data 7

3.4 Restricted Boltzmann Machine

Model Description The restricted Boltzmann machine (RBM) is a stochastic
ANN that learns a probability distribution over a training data set. It is a special
case of the Markov random field [49,20]. The RBM consists of a layer of n
“visible” neurons vi and a layer of m “hidden” neurons hj that form a bipartite
graph with a connection weight matrix Wn×m = (wij)n×m, a bias vector a =<
ai >i∈N[1,n] for the visible neurons and a bias vector b =< bj >j∈N[1,m] for the
hidden neurons. The probability distribution is defined using the energy function

E(v,h) = −aTv − bTh− vTWh (7)

which assigns a scalar energy to each configuration, i.e., to each pair of visible
and hidden neuron values. A high energy for a configuration corresponds to a
low probability of that configuration to appear in the model. The objective of
the training is to find a configuration of weights and biases that lead to a high
probability for the training data objects and a low probability for other data.
So the energy for data objects from the training data set is sought to be mini-
mized in the training process. Using the gradient descent algorithm to minimize
this objective function would involve the computation of the expectation over
all possible configurations of the input data object, which is not feasible in prac-
tice. Hence, the training usually is performed with the contrastive divergence
algorithm [19] using Gibbs sampling, which approximates the gradient descent.
This algorithm simplifies and speeds up training compared to gradient descent.
It performs three learning steps on each training data object. First, all hidden
units are updated in parallel from the training data object at the visible neurons.
Then, the visible neurons are updated in parallel to get a reconstruction of the
training data object. Finally, the hidden neurons are updated in parallel again.
Figure 1(c) illustrates the architecture of a RBM.

Our Outlier Detection Approach We use a RBM with Gaussian visible
neurons. As it assumes that the data is normally distributed, we standardize
each dimension by subtracting the mean and dividing by the standard deviation
as a preprocessing step. After the training, the energy is expected to be low
for normal data objects and high for rare or unknown data objects. The outlier
score for a data object, OSRBM, is its so-called free energy:

OSRBM(x) = −
∑
i

aixi −
∑
i

x2i
2

+
∑
i

ln
∑
hi

ebi+wix (8)

The proportion δ of hidden units w.r.t. visible units, and the number of
training epochs ne are free parameters. The share of the data set used for training
is referred to as γ.

4 Evaluation

In this section, we pursue two separate evaluations. First, we evaluate the pa-
rameter ranges of each of our approaches on high-dimensional data. This leads to
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the recommendation of “good” parameters. Second, we compare the approaches
against the state of the art and evaluate them using high-dimensional data.

We implement the models in Python 3 using Keras, Tensorflow and the SOM
implementation Somoclu [50]. All experiments run on a quad-core processor at
3.20 GHz with 8 GB RAM. As mentioned earlier, we publish the source code for
our experiments on GitHub2, to ensure reproducibility.

4.1 Parameter Selection

Campos et al. [8] compare various parametrized outlier detection approaches,
with a large range of parameter values. Their results indicate that the entire
parameter-value range is needed to achieve the highest outlier detection qual-
ity over different data sets, and that there exists no obvious way to find good
parameter values a priori for a given data set.

To verify whether this applies to NN-based approaches as well, we investigate
the range of parameter combinations for each approach, based on 26 data sets.
Table 1 lists the characteristics of each data set in the corpus. It contains the
same data sets as in [9] except for KddCup99, for which there are no exact
results in [9], plus an assortment of high-dimensional data sets: Arrhythmia [8],
InternetAds [8], ISOLET [14], MNIST and Musk [42]. Arrhythmia, InternetAds
and ISOLET have several variants with different proportions of outliers. In this
work we present the results for the variants with approximately 2% outliers.
Because of the restricted number of pages, we present the evaluation results for
the other variants in our GitHub repository, evaluating in total 26 data sets.

Table 1. List of evaluated data sets.

Data Set Dimensions Data Objects Outliers Outlier Ratio

Arrhythmia-2 259 248 4 1.61%
Cardio 21 1,831 176 9.61%
Ecoli 7 336 9 2.68%
InternetAds-2 1,555 1,630 32 1.96%
ISOLET-2 617 2,449 50 2.00%
Lympho 18 148 6 4.05%
MNIST 100 7,603 700 9.21%
Musk 166 3,062 97 3.12%
Optdigits 64 5,216 150 2.88%
P53 5,408 16,592 143 0.86%
Pendigits 16 6,870 156 2.27%
Seismic 11 2,584 170 6.58%
Thyroid 6 3,772 93 2.4%
Waveform 21 3,509 166 4.73%
Yeast 8 1,364 65 4.77%

2 https://github.com/Cognitana-Research/NNOHD
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We evaluate the goodness of each parameter combination on the whole data-
set assortment. The aim of the evaluation is to derive parameters that lead to
results which are best on average. To this end, we define a notion of deviation
Dp that should ideally be minimized:

Dp(A) =

∑
d∈D (Smax

d − Sp
d)

|D|
(9)

Intuitively, the deviation Dp of an algorithm A is the average difference between
the best achievable score Smax

d over the parameters p ∈ P and the actual score
Sp
d obtained with parameter combination p for all data sets d ∈ D. In the

end, choosing the parameter combination minimizing Dp means maximizing the
normalized average score for each data set in the assortment. Our hope is that
those parameters will lead to good outlier detection on data sets that are not
part of this assortment as well, so they can be useful to others.

We instantiate the score S as the commonly used ROC AUC. For the AE,
we investigate encoding factors from 0.5 to 0.9 in steps of 0.1. For the SOM,
we use quadratic maps with columns and rows from the range {1, . . . , 20}. We
test the RBM with values for δ, the number of hidden neurons as share of the
visible neurons, of 0.1 to 0.9 in steps of 0.1, and for γ, the share of data used for
training, of 0.1 to 0.9 in steps of 0.1. For all three approaches we use 10, 20, 50,
100 and 1,000 training epochs. The final result for a parameter combination is
computed as the average of 20 runs. As there is no obvious way to select these
parameter values a priori, we test all p ∈ P for each of our approaches in a
brute-force fashion. This results in a total number of 10,500 experiments for the
AE, 42,000 for the SOM, and 170,000 for the RBM.

Table 2 is an excerpt of the parameter evaluation of the AE, SOM and
RBM approaches. The best parameter value for each approach is in boldface,
the parameter values that are within 0.01 of the best result are in gray boldface.
We publish the complete list in our GitHub repository. The evaluation leads to
the following recommendations:

– For the Autoencoder:
• Encoding factor ε = 0.8
• Number of training epochs ne = 20

– For the Self-organizing map:
• Topology size n = 2
• Number of training epochs ne = 10

– For the Restricted Boltzmann machine:
• Proportion of hidden neurons δ = 0.8
• Number of training epochs ne = 100
• Proportion of training data γ = 0.9

Interestingly, the number of training epochs ne minimizing Dp for the ANN-
based approaches is relatively low, between 10 and 20 epochs for AE and SOM
and 100 for RBM, and this observation is consistent even if we vary the encoding
factor ε. This means that, in contrast to other application domains of neural
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Table 2. Parameter evaluation of AE and SOM (excerpt).

Parameters AE SOM Parameters RBM
ε n ne Dε,ne Dn,ne δ ne γ Dδ,ne,γ

0.6 2 10 0.0478 0.0213 0.7 100 0.5 0.1148
0.6 2 20 0.0411 0.0320 0.7 100 0.9 0.0750
0.6 2 100 0.0476 0.0214 0.7 1000 0.5 0.0940
0.6 2 1,000 0.0844 0.0214 0.7 1000 0.9 0.0724
0.7 3 10 0.0501 0.0306 0.8 100 0.5 0.1173
0.7 3 20 0.0412 0.0457 0.8 100 0.9 0.0597
0.7 3 100 0.0527 0.0327 0.8 1000 0.5 0.0905
0.7 3 1,000 0.0788 0.0323 0.8 1000 0.9 0.0701
0.8 4 10 0.0409 0.0390 0.9 100 0.5 0.1027
0.8 4 20 0.0403 0.0500 0.9 100 0.9 0.0734
0.8 4 100 0.0512 0.0535 0.9 1000 0.5 0.0868
0.8 4 1,000 0.0827 0.0545 0.9 1000 0.9 0.0769

networks such as image recognition, good outlier detection is feasible with low
computational effort, as few training epochs are required.

We can also see that SOM achieves the best results for very low-dimensional
maps, i.e., only 2 or 3 columns/rows, which also stands for a low computational
burden. For the RBM we notice that the best results are achieved for a larger
number of epochs, namely 100 and 1,000, while the robustness is rather stable
over the number of hidden neurons. Finally, we see that the average deviation
for the large majority of the parameter values is not greater than 5%. Thus, the
performance of neural-based methods seems to be relatively independent from
the chosen parameters, i.e., they fulfill Requirement R3.

4.2 Outlier Detection Quality Evaluation

We now compare our approaches to the state of the art. We consider Rand-
Net [9], which is – to our knowledge – the most recently published ANN-based
contribution. The authors did not publish their implementation nor enough in-
formation for reproducibility, so we simply compare to the same data sets except
for the 41-dimensional KddCup99, and the baseline methods LOF [7], Hawkins
[18], HiCS [24] and LODES [46] as in [9]. The authors also have set k = 5 for
LOF and HiCS, which yields suboptimal results for these approaches. Investi-
gating all parameter values k in the range k ∈ 1, . . . , 100 for LOF and HiCS,
we find that k = 100 leads to the best results on average. Thus, we repeat the
evaluation on these data sets with k = 100 for a fair comparison. We further set
HiCS parameters to M = 50, α = 0.1 and candidate cutoff = 100, which is in line
with the recommendations by the authors [24]. For any competing algorithm,
we use the implementation from ELKI [48].

Table 3 lists the ROC AUC values for the data sets in [9]. The best values
in the table are highlighted in boldface, values within 1% of the best value are
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highlighted in italics. We see that AE and SOM are at least competitive using the
recommended parameter values. SOM even outperforms all approaches in three
data sets. The RBM stands behind for most data sets, only having competitive
results for the Pendigits and Thyroid data sets. Surprisingly, in a few cases (e.g.,
[Optdigits, LODES]), the score falls way below 0.5, i.e., it is worse than random
guessing. We notice that this never occurs with neural-based approaches.

Table 3. ROC AUC Comparison for data sets used in [9] (in %).

Data Set AE SOM RBM RandNet LODES HiCS LOF Hawkins

Cardio 92.10 93.01 53.75 92.87 78.90 85.59 91.41 92.36
Ecoli 87.19 86.65 76.62 85.42 91.81 88.25 90.35 82.87
Lympho 90.33 99.77 58.57 99.06 78.16 92.94 99.88 98.70
Optdigits 71.00 71.93 48.90 87.11 2.66 37.94 38.94 87.63
Pendigits 66.53 95.83 91.25 93.44 87.88 72.78 51.51 89.81
Seismic 71.88 71.99 33.03 71.28 66.71 68.19 65.58 68.25
Thyroid 89.46 92.99 94.35 90.42 72.94 91.74 96.31 87.47
Waveform 59.22 69.39 60.35 70.05 62.88 71.82 76.56 61.57
Yeast 83.81 81.81 49.37 82.95 77.70 78.21 78.19 82.12

In Table 4, we observe similar results for the high-dimensional data sets
Arrhythmia, ISOLET, MNIST, Musk and P53. We compare our approaches
against LOF [7], HiCS [24], FastABOD [30], LoOP [28]. In addition, we use
one-class SVM [47] and KNN Outlier [41] with k = 1 as a baseline. AE and
SOM yield the highest ROC AUC for 4 of 6 data sets. For the ISOLET data set
where LOF has the highest ROC AUC, AE and SOM are within reach of the
best results. Only for InternetAds, which consists only of binary attributes, the
ANN-based approaches fall behind the best results. Figure 2 graphs the ROC
AUC comparisons for the high-dimensional data sets.

Table 4. ROC AUC comparison for high dimensional data sets (in %).

Data Set AE SOM RBM HiCS LOF FastABOD LoOP OC-SVM KNN

Arrhythmia-2 80.22 76.33 49.04 50.56 76.74 76.84 75.00 77.66 71.88
InternetAds-2 43.36 66.12 46.93 99.84 71.64 76.49 77.14 64.18 81.23
ISOLET-2 96.85 99.28 92.28 79.71 99.58 93.09 98.23 92.05 94.66
MNIST 82.06 81.07 49.87 51.74 80.34 54.35 71.66 76.46 72.74
Musk 100 100 95.60 99.60 84.00 5.11 51.86 67.60 7.11
P53 60.63 67.17 64.76 62.09 61.99 62.92 61.99 61.27 62.56

Provost and Foster [40] argue that ROC AUC is not an appropriate perfor-
mance measure for the classification of highly skewed data sets, which certainly is
the case with outliers. Thus, we use the area under the precision-recall curve (PR
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Fig. 2. ROC AUC for High-Dimensional Data Sets

AUC) as a complementary measure for the high-dimensional data-set evaluation
[13]. Table 5 lists the corresponding PR AUC values.

Table 5. PR AUC comparison for high dimensional data sets (in %).

Data Set AE SOM RBM HiCS LOF FastABOD LoOP OC-SVM KNN

Arrhythmia-2 29.37 27.94 1.66 1.64 3.83 3.98 3.51 4.90 3.04
InternetAds-2 1.58 32.78 1.91 94.52 34.86 32.79 37.09 24.83 32.24
ISOLET-2 44.45 66.93 29.51 4.47 70.95 29.54 51.78 25.65 42.91
MNIST 30.13 27.40 9.26 9.99 33.95 14.05 24.74 25.49 27.96
Musk 100 100 85.58 97.46 14.68 1.65 3.71 4.54 1.91
P53 1.04 1.29 1.20 1.25 1.06 1.13 1.06 1.06 1.30

As we can see, AE and SOM have the best results in terms of PR AUC for 2
out of 6 data sets and are close to the best results for the other data sets except
for InternetAds. This also indicates that AE and SOM have fewer false positives
in most data sets. A significant insight is that SOM, and to a certain degree also
AE, deliver competitive results over all data sets, while all reference algorithms
fall behind the top group by much, at least for some data sets. This stability
of results is a great advantage for the SOM and the AE. The RBM again has
a mixed performance: It is competitive on the ISOLET and Musk data sets,
but close to guessing for the Arrhythmia and MNIST data sets. It is noticeable
that the RBM yields results similar to random guesses for all sparse data sets
that are evaluated, namely the Arrhythmia, InternetAds, Lympho, MNIST and
Optdigits data sets.
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4.3 Runtime Evaluation

We measure the execution time of our approaches. Each algorithm runs with the
recommended parameter values.
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Fig. 3. Runtime comparison

Figure 3 graphs the average execution time for selected data sets with a loga-
rithmic scale. We see that SOM is very fast for all data sets. This is particularly
obvious for the P53 data set, which consists of 5,408 dimensions and 16,592 data
objects. While the fastest of the compared algorithms needs more than 18 min-
utes, the SOM needs less than 2 minutes. The RBM with less than 9 minutes
and the AE with less than 20 minutes still are very fast. Note that the runtimes
were measured without GPU support. For the AE in particular, the runtime
using a GPU would be much smaller.

We could not compare the runtime of our approaches with RandNet, because
of the missing implementation. However, since it consists of an ensemble of up
to 200 AEs with 3 hidden layers, it should be clear that it requires much more
computational effort than any of our neural-based approaches.

5 Conclusions

This paper studies the application of ANN-based models, namely autoencoder
(AE), self-organizing map (SOM) and restricted Boltzmann machine (RBM),
to high-dimensional outlier detection. For each of these approaches, we propose
to use a model-specific outlier score. Nonetheless, the scores have in common
that they quantify in a fully unsupervised way the deviation from the expected
output for each data point w.r.t. the learned model.

We evaluate the models on an assortment of high-dimensional data sets and
compare the results to state-of-the-art outlier detection algorithms. The SOM
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and AE approaches show superior performance in terms of detection quality
(Requirement R1) and runtime (Requirement R2) compared to the state of the
art. SOM clearly outperforms them all and yields very high result quality in large
high-dimensional data sets. At the same time, the range of relevant parameter
values (Requirement R3) for AE and SOM is significantly smaller than for the
state-of-the-art algorithms.

All in all, this study also shows that “simple” is often better in the case
of outlier detection. When used properly, well-known ANN-based approaches
such as AE and SOM outperform recently proposed approaches for unsupervised
outlier-detection tasks in high-dimensional data, both in terms of accuracy and
runtime, while being less sensitive to parameter tuning.

In the future, it will be interesting to investigate whether the extension of
the RBM to deep belief networks (DBNs) [20] leads to better results for this
class of algorithms, since RBM has shown a relatively low detection quality. In
this study, we have determined good parameter values for each approach in the
general case, but finding the optimal values for each data set for the AE and
SOM might improve performance even more. Thus, our goal would be to come
up with a method to set parameters automatically in a data-driven way.
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