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Challenges in high-dimensional data streams Application

Rt curse of dimensionality
»x changes can affect arbitrary subspaces

m chemical plants are highly complex
m large number of deployed sensors

Q huge number of possible subspaces (29 — 1) m changes in the sensors’ readings can hint
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Our algorithm: ABCD
m encodes observations in fewer dimensions (e.g., AMSE R -
using PCA, Kernel-PCA, or Autoencoders) o T
m monitors reconstruction error in adaptive window e o e % o * | -, u A
m After change: _ ] o B |
m finds change subspace ) L .
= computes severity of drift in subspaces MSE :BZ-E—Nb w»ﬁ T; »Cchange point » change subspace —» change severity

Adaptive window and stream aggregates

m stream aggregates (based on [1], [2]) allow
evaluating multiple possible change points

m efficient variance tracking

m given two aggregates A, and A; containing
sample mean g and sum of squared dis-
tances ssd with kK < t, one can derive the
aggregate for the time interval (k, t]
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Change subspace

For each dimension J:

m compute change score in that dimension (the one based on
Bernstein's inequality)

m if change score less than 7 (external parameter)
m add J to change subspace

Change severity

For each dimension j in change subspace:

= standard-normalize the average reconstruction loss 47, ;
observed after the change point t*
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Detecting changes

m Boxes summarize performance of approaches for different hyperparameters

and data sets (detailed results in the paper)

m Smaller box — approach is more robust to hyperparameter choice
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Characterizing changes

m Top: accuracy at detecting the change subspace; boxes sum-
marize different hyperparameters and data sets

m Bottom: Spearman correlation between severity computed by
approach and ground truth

Accuracy at detecting change subspace
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