

Adaptive Bernstein Change Detector for High-Dimensional Data Streams

Marco Heyden (marco.heyden@kit.edu), Edouard Fouché, Vadim Arzamasov, Tanja Fenn, Florian Kalinke, and Klemens Böhm

Challenges in high-dimensional data streams

- curse of dimensionality
- **X** changes can affect arbitrary subspaces
- **Q** huge number of possible subspaces $(2^d 1)$

correlation changed between and ! (change subspace)
but how severly? (change severity)

Application

to undesired changes in the process

chemical plants are highly complex

large number of deployed sensors

changes in the sensors' readings can hint

Our algorithm: ABCD

- encodes observations in fewer dimensions (e.g., using PCA, Kernel-PCA, or Autoencoders)
- monitors reconstruction error in adaptive window
- After change:
 - finds change subspace
- computes severity of drift in subspaces

Adaptive window and stream aggregates

- stream aggregates (based on [1], [2]) allow evaluating multiple possible change points
- efficient variance tracking
- given two aggregates A_k and A_t containing sample mean $\hat{\mu}$ and sum of squared distances ssd with k < t, one can derive the aggregate for the time interval (k, t]

$$\hat{\mu}_{k+1,t} = \frac{1}{t-k} (t\hat{\mu}_{1,t} - k\hat{\mu}_{1,k})$$

$$ssd_{k+1,t} = ssd_{1,t} - ssd_{1,k} - \frac{k(t-k)}{t} (\hat{\mu}_{1,k} - \hat{\mu}_{k+1,t})^2$$

Change subspace

For each dimension *j*:

- compute change score in that dimension (the one based on Bernstein's inequality)
- if change score less than τ (external parameter)
- add j to change subspace

Change severity

For each dimension *j* in change subspace:

• standard-normalize the average reconstruction loss $\hat{\mu}_{t^*+1,t}^{D^*}$ observed after the change point t^*

$$\Delta = \frac{\left| \hat{\mu}_{t^*+1,t}^{D^*} - \hat{\mu}_{1,t^*}^{D^*} \right|}{\sigma_{1,t^*}^{D^*}}$$

Detecting changes

- Boxes summarize performance of approaches for different hyperparameters and data sets (detailed results in the paper)
- lacktriangle Smaller box ightarrow approach is more robust to hyperparameter choice

Characterizing changes

- Top: accuracy at detecting the change subspace; boxes summarize different hyperparameters and data sets
- Bottom: Spearman correlation between severity computed by approach and ground truth

Accuracy at detecting change subspace

- [1] B. P. Welford, "Note on a Method for Calculating Corrected Sums of Squares and Products," Technometrics, pp. 419–420, 1962. DOI: 10.1080/00401706.1962.10490022.
- [2] T. F. Chan, G. H. Golub, and R. J. LeVeque, "Updating formulae and a pairwise algorithm for computing sample variances," in COMPSTAT 1982 5th Symposium held at Toulouse 1982, H. Caussinus, P. Ettinger, and R. Tomassone, Eds., Heidelberg: Physica-Verlag HD, 1982, pp. 30-41, ISBN: 978-3-642-51461-6.