

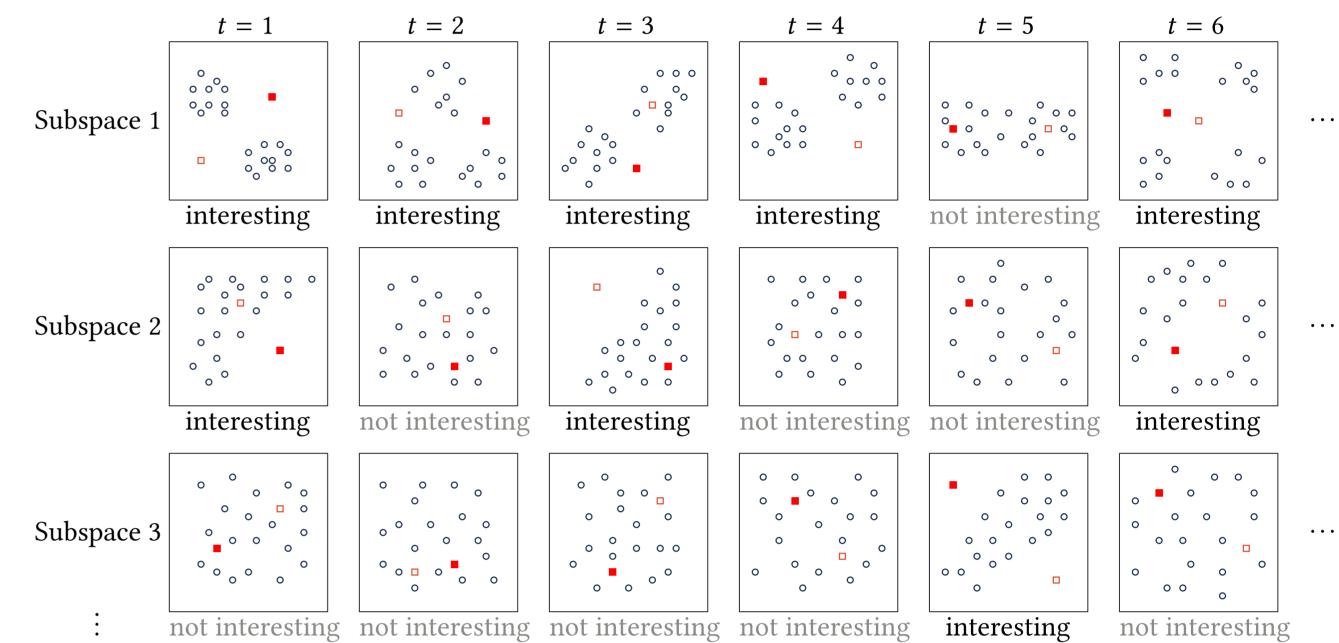
Institute for Program Structures and Data Organization (IPD) **Department of Informatics**

Efficient Subspace Search in Data Streams

Edouard Fouché, Florian Kalinke, Klemens Böhm

Information Systems, Elsevier (In press). Preprint: <u>arXiv:2011.06959</u>

Motivation

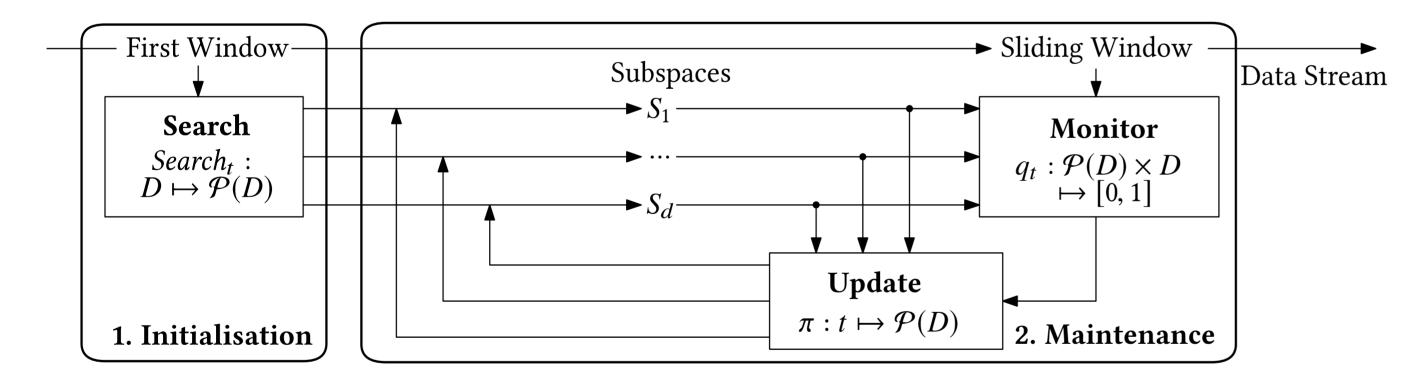

Data streams are everywhere

- Network traffic, sensor data, financial transactions, ...
- "Searching for outliers in high-dimensional data is like searching for a needle in a haystack, while the haystack "hides" among an exponential number of haystacks" [3].
- Mining patterns (outliers, clusters) must take place in real time
 - Difficulties: curse of dimensionality & concept drift
- "Ensemble" Feature Selection: Subspace Search
 - Goal: find relevant projections, as in [2]
 - So far only works for specific algorithms, or static data
- Subspace Search requires:
 - A quality measure (how "good" is a given projection)
 - A search scheme (explore the exponential set of subspaces)
 - \rightarrow We extend this idea to the streaming setting
- **Stream constraints:** Efficiency, Single Scan, Adaptation, Anytime

Related Work

- Subspace search for static data: [2, 5, 6]
- Subspace search for data streams: [7, 8]
 - Only for specific static Data Mining algorithms
- Closest competitor: StreamHiCS [9]
 - Boils down to a periodic repetition of the procedure in [2]

Data streams: The haystacks and needle location can also change.



Our Contributions

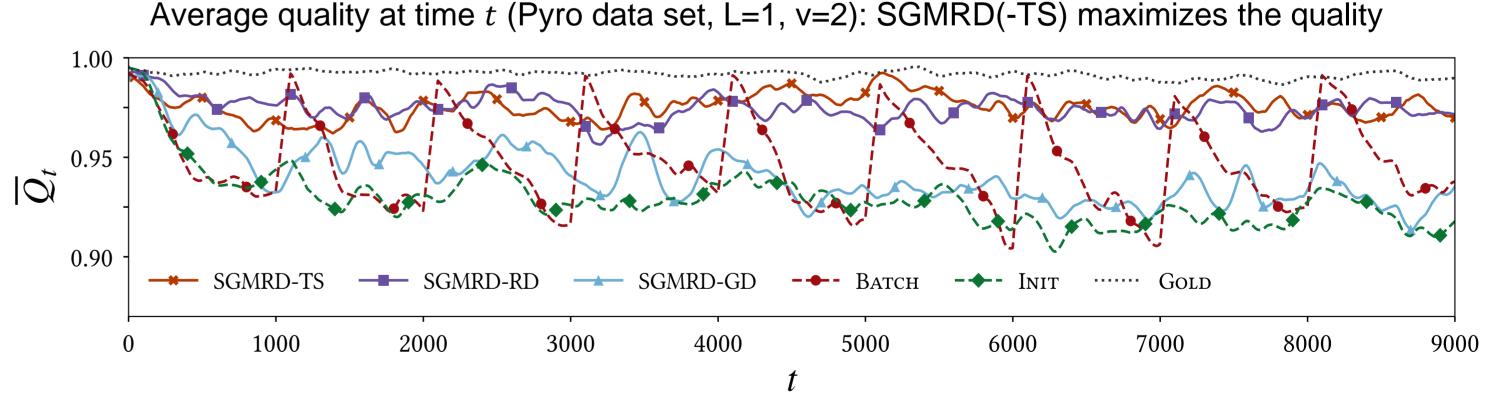
- SGMRD: Streaming Greedy Maximum Random Deviation
 - A new method for "general" subspace search in data streams
 - SGMRD leverages novel multivariate dependency measures and Multi-Armed Bandit (MAB) algorithms
 - Monitoring subspaces in data streams improves the performance of subsequent mining tasks, e.g., outlier detection
- The most similar approach to ours, but for static data: GMD [6]
- Outlier detectors: xStream [10], RS-Stream [11]

Code, data: https://github.com/edouardfouche/SGMRD

Our Approach & Experiments

Search: Greedy dimension-based scheme

- Returns one single subspace per dimension d, as in [6]
- This subspace maximizes quality w.r.t. d


Monitor: Quality as a "contrast" measure

- **Contrast:** $q_t(S, s_i) = 1 \frac{1}{M} \sum_{m=1}^M T(\hat{p}(S|s_i), \hat{p}(S|\overline{s_i})) \in [0,1]$
- **Smoothing:** $Q_{t+1}(s_i) = \gamma * q_t(S, s_i) + (1 \gamma) * q_{t+1}(S, s_i)$

Update: Policy based on (Multiple-Play) Multi-Armed Bandit

Success: The search w.r.t. s_i yields a better subspace (1)

Characteristics of the	e benchmark data s	ets Our s	synthetic benchmark	generation
Benchmark # Instances PYRO 10,000 KDDCup99 25,000 ACTIVITY 22,253 BACKBLAZE 12,600 CREDIT 284,807	$\begin{array}{c} \# \ {\rm Dimensions} & \% \ {\rm Outliers} \\ 100 & {\rm NA} \\ 38 & 7.12 \\ 51 & 10 \\ 44 & 1 \\ 29 & 0.17 \end{array}$			$1 + \delta_2$ $0 + \delta_2$ $0 + \delta_2$ $0 + \delta_2$ $0 + \delta_2$
SYNTH1010,000SYNTH2010,000SYNTH5010,000	$\begin{array}{ccc} 10 & 0.86 \\ 20 & 0.88 \\ 50 & 0.81 \end{array}$	$ \begin{array}{c} - \\ 0 \\ 0 \\ 0 \\ n \\ n \\ n \\ n \\ n \\ n \\ n$	0 'between'	n = i + 1

Outlier detection: SGMRD outperforms its competitors in terms of ROC AUC, precision, recall

Approach	AUC	AP	P1%	$\mathrm{P2\%}$	P5%	R1%	m R2%	m R5%	Approach	AUC	AP	P1%	$\mathrm{P2\%}$	$\mathrm{P5\%}$	m R1%	m R2%	m R5%

Failure: The search w.r.t. s_i did not yield a better subspace (0)

We use a strategy based on Thompson Sampling (TS) [12]

Downstream Data Mining

- Virtually any task: outlier detection, clustering, predictions...
- We focus on outlier detection (with Local Outlier Factor (LOF))

 \rightarrow For more details and experiments, see [1]

))	SGMRD LOF STREAMHICS STREAM V XSTREAM	97.32 93.93 88.52 95.95 77.71	85.39 61.80 47.38 68.23 20.41	94.59 74.32 70.72 71.62 3.60	94.83 64.72 54.61 72.58 10.14	94.24 64.03 51.89 75.00 16.31	9.44 7.42 7.06 7.15 0.36	18.97 12.94 10.92 14.52 2.02	47.10 32.00 25.93 37.48 8.13	OTH LOF LOF STREAMHICS STREAM STREAM	92.70 88.77 88.81 71.23 68.51	59.93 31.44 31.16 1.87 2.58	50.00 33.00 33.00 0.00 5.00	26.00 18.50 19.00 0.00 3.00	$12.00 \\ 10.40 \\ 10.40 \\ 2.80 \\ 4.00$	58.14 38.37 38.37 0.00 5.81	60.47 43.02 44.19 0.00 6.98	69.77 60.47 60.47 16.28 23.26
	6 SGMRD LOF STREAMHICS RS-STREAM XSTREAM	69.98 65.07 57.11 43.21 52.70	10.29 9.57 7.89 5.73 8.23	0.00 0.00 0.00 0.00 0.00	0.20 0.00 0.00 0.00 0.20	0.56 0.08 0.08 0.08 0.08	0.00 0.00 0.00 0.00 0.00	0.06 0.00 0.00 0.00 0.00	0.39 0.06 0.06 0.06 0.06	SGMRD LOF STREAMHICS STREAM STREAM	85.05 72.55 71.71 48.39 63.64	41.19 5.57 5.37 0.80 1.58	36.00 8.00 8.00 0.00 1.00	19.50 6.00 6.00 0.00 1.50	9.20 4.40 4.00 0.00 2.20	40.91 9.09 9.09 0.00 1.14	$\begin{array}{c} \textbf{44.32} \\ 13.64 \\ 13.64 \\ 0.00 \\ 3.41 \end{array}$	52.27 25.00 22.73 0.00 12.50
_	HIGH SGMRD LOF STREAMHICS RS-STREAM XSTREAM	90.91 56.92 79.22 80.55 76.86	13.31 1.65 40.07 7.17 3.69	7.14 2.38 50.79 7.14 1.59	18.65 3.57 26.59 13.49 3.17	15.40 2.38 10.95 9.37 6.19	7.14 2.38 50.79 7.14 1.59	37.30 7.14 53.17 26.98 6.35	76.98 11.90 54.76 46.83 30.95	SGMRD LOF STREAMHICS STREAM STREAM	75.87 61.38 63.90 46.52 48.43	31.27 1.08 12.00 0.73 0.90	27.00 0.00 11.00 0.00 1.00	16.00 0.50 6.00 0.00 0.50	7.60 0.60 3.40 0.00 1.40	33.33 0.00 13.58 0.00 1.23	39.51 1.23 14.81 0.00 1.23	46.91 3.70 20.99 0.00 8.64
)	SGMRD LOF STREAMHICS NS-STREAM XSTREAM	95.06 91.50 89.21 85.13 94.62	15.87 4.67 3.48 1.63 9.10	10.69 6.22 3.59 2.27 10.83	7.47 5.20 2.93 2.49 6.48	3.22 2.69 2.28 1.86 3.18	55.51 32.32 18.63 11.79 56.27	77.57 53.99 30.42 25.86 67.30	83.65 69.96 59.32 48.29 82.51									

References	[3] Aggarwal, C. (2013). Outlier Analysis, Springer.	[7] Aggarwal, C. (2009). On high dimensional projected clustering of	[10] Manzoor, E. et al. (2018). xStream: Outlier Detection in Feature-Evolving
	[5] Wang, Y. et al. (2017). Unbiased multivariate correlation	uncertain data streams. In ICDE'09.	Data Streams. In KDD'18.
[1] Fouché, E., Kalinke, F., and Böhm, K. (2020). Efficient Subspace		[8] Zhang, J. et al. (2008). SPOT: A system for detecting projected	[11] Sathe, S. and Aggarwal, C. (2018). Subspace histograms for outlier
Search in Data Streams. Information Systems, Elsevier. In press.	[6] Trittenbach, H. and Böhm, K. (2019). Dimension-based subspace	outliers from high-dimensional data streams. In ICDE'08.	detection in linear time. Knowledge and Information Systems.
	search for outlier detection. International Journal of Data Science	[9] Becker, V. (2016). Concept change detection in correlated	[12] Komiyama, J. et al. (2015) Optimal regret analysis of Thompson sampling
Based Outlier Ranking. In ICDE '12.	and Analytics.	subspaces in data streams, Master's thesis, KIT.	in stochastic multi-armed bandit problem with multiple plays. In ICML'15.

KIT – The Research University in the Helmholtz Association – 04/01/2021

