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Efficient Subspace Search in Data Streams
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Motivation
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Data streams are everywhere

Network traffic, sensor data, financial transactions, … 

Mining patterns (outliers, clusters) must take place in real time

Difficulties: curse of dimensionality & concept drift 

“Ensemble” Feature Selection: Subspace Search

Goal: find relevant projections, as in [2]

So far only works for specific algorithms, or static data 

Subspace Search requires:

A quality measure (how “good” is a given projection)

A search scheme (explore the exponential set of subspaces)

 We extend this idea to the streaming setting

Stream constraints: Efficiency, Single Scan, Adaptation, Anytime 
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Search: Greedy dimension-based scheme

Returns one single subspace per dimension 𝑑, as in [6]

This subspace maximizes quality w.r.t. 𝑑

Monitor: Quality as a “contrast” measure

Contrast: 𝑞𝑡 𝑆, 𝑠𝑖 = 1 −
1

𝑀
 𝑚=1

𝑀 𝑇(  𝑝 𝑆 𝑠𝑖 ,  𝑝(𝑆| 𝑠𝑖)) ∈ [0,1]

Smoothing: 𝑄𝑡+1 𝑠𝑖 = 𝛾 ∗ 𝑞𝑡 𝑆, 𝑠𝑖 + 1 − 𝛾 ∗ 𝑞𝑡+1(𝑆, 𝑠𝑖)

Update: Policy based on (Multiple-Play) Multi-Armed Bandit

Success: The search w.r.t. 𝑠𝑖 yields a better subspace (1)

Failure: The search w.r.t. 𝑠𝑖 did not yield a better subspace (0)

We use a strategy based on Thompson Sampling (TS) [12]

Downstream Data Mining

Virtually any task: outlier detection, clustering, predictions… 

We focus on outlier detection (with Local Outlier Factor (LOF))

 For more details and experiments, see [1]
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Subspace search for static data: [2, 5, 6]

Subspace search for data streams: [7, 8]

Only for specific static Data Mining algorithms

Closest competitor: StreamHiCS [9]

Boils down to a periodic repetition of the procedure in [2] 

The most similar approach to ours, but for static data: GMD [6]

Outlier detectors: xStream [10], RS-Stream [11]

SGMRD: Streaming Greedy Maximum Random Deviation 

A new method for “general” subspace search in data streams

SGMRD leverages novel multivariate dependency measures 

and Multi-Armed Bandit (MAB) algorithms

Monitoring subspaces in data streams improves the 

performance of subsequent mining tasks, e.g., outlier detection 

Code, data: 

Average quality at time 𝑡 (Pyro data set, L=1, v=2): SGMRD(-TS) maximizes the quality

Characteristics of the benchmark data sets

Information Systems, Elsevier (In press). Preprint: arXiv:2011.06959

“Searching for outliers in high-dimensional data is like searching for a 

needle in a haystack, while the haystack “hides” among an exponential 

number of haystacks” [3].

Data streams: The haystacks and needle location can also change.

Our synthetic benchmark generation

Outlier detection: SGMRD outperforms its competitors in terms of ROC AUC, precision, recall

https://github.com/edouardfouche/SGMRD
https://arxiv.org/abs/2011.06959

