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The MAB is a fundamental model for sequential decision-making…  

Let there be a set of 𝐾 arms, 𝐾 = 1, 2, … , 𝐾

𝑖 ∈ [𝐾] is associated to a distribution ℬ 𝜇𝑖 with unknown 𝜇𝑖

At each round 𝑡 = 1, 2, … , 𝑇:

1. The forecaster chooses one arm 𝑖 ∈ [𝐾]

2. She observes a reward 𝑋𝑡 ~ ℬ 𝜇𝑖

3. She updates her estimation  𝜇𝑖 of 𝜇𝑖

The goal of the forecaster is to maximize her gain, i.e.,  𝑡=1
𝑇 𝑋𝑡

Extension: The Multiple-Play MAB (MP-MAB) [6, 9]

The forecaster chooses 1 ≤ 𝐿 ≤ 𝐾 arm(s) per round
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Problem Definition: MP-MAB with efficiency constraint

𝐼𝑡 ⊂ [𝐾] is the set of arms played at time 𝑡, with 𝐼𝑡 = 𝐿𝑡

𝑆𝑖(𝑡) is the sum of the rewards from arm 𝑖 up to time 𝑡

max
𝐼𝑡⊂[𝐾]
 

𝑖∈𝐼𝑡

𝑆𝑖(𝑡) 𝑠. 𝑡. 𝜂𝑡 =
 𝑖∈𝐼𝑡 𝜇𝑖

𝐿𝑡
> 𝜂∗

where 𝜂∗ is a user-/application-specific efficiency threshold

e.g., if reward ≤ 1 and cost = 1 for each arm, then 𝜂∗ > 0.5

If the forecaster always chooses the top-𝐿𝑡 arms, then the problem is equivalent

to finding the optimal number of plays 𝐿∗:

General Scaling Multi-Armed Bandit

 Our extension is independent from the underlying “base bandit”

The standard regret 𝑅𝑒𝑔 and the “pull regret” 𝑃𝑅𝑒𝑔 (static): 

But it has several limitations:

Typically, playing an arm is associated to a cost

𝐿 is fixed, and an “efficient” number of plays is unknown

Playing too many arms leads to negative gain

Playing not enough arms is a loss of potential gain

Also, the distribution parameters 𝜇1, … , 𝜇𝐾 may vary over time 

Challenges:

C1: Top-arms Identification

C2: Scale Decision

C3: Change Adaptation

We propose the Scaling Multi-Armed Bandit (S-MAB)

The forecaster adapts the number of plays  C1, C2, C3

Institute for Program Structures and Data Organization (IPD)

Department of Informatics

& The University of Tokyo – Institute of Industrial Science 

References

𝟏.We leverage the MP-MAB [6, 9] by introducing a so-called “scaling policy” 

We prove that the policy converges to an “optimal” number of plays

 S-MAB has logarithmic regret and logarithmic “pull regret”

𝟐.We combine S-MAB with ADWIN [1] for the non-static setting

ADWIN maintains estimates of  𝜇1, … , 𝜇𝐾, which are changing over time

S-MAB with ADWIN can handle both gradual and abrupt changes

𝟑.We evaluate against synthetic and real-world data 

S-MAB shows excellent performance compared to the state of the art 

𝑏𝑖 𝑡 is the KL-UCB index of arm 𝑖 [4]

 𝐿𝑡 + 1 is the arm with the (𝐿𝑡+1)-th largest index

Scaling Policy: Kullback-Leibler Scaling (KL-S)

…

Our Use Case: Correlation Monitoring

Bioliq®: Experimental pyrolysis plant at KIT

S-MAB on Bioliq data stream:   

Arms ↔ sensor pairs

Reward: 𝑀𝐼 ≥ Γ ?

We release our source code and data:
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Any bandit algorithm, e.g.:

• Thompson Sampling (TS) [6]

• UCB-type [2]

• Exp3 [9]

• …

𝑅𝑒𝑔 𝑇 = 

𝑡=1

𝑇

max
𝒥⊆ 𝐾 , 𝒥 =𝐿𝑡

 

𝑗∈𝒥

𝜇𝑗 − 

𝑖∈𝐼𝑡

𝜇𝑖 𝑃𝑅𝑒𝑔 𝑇 = 

𝑡=1

𝑇

𝐿∗ − 𝐿𝑡

𝐿𝑡+1 =  

𝐿𝑡 − 1 𝑖𝑓  𝜂𝑡 ≤ 𝜂
∗

𝐿𝑡 + 1 𝑖𝑓  𝜂𝑡 > 𝜂
∗

𝐿𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑎𝑛𝑑  𝐵𝑡 > 𝜂

∗  𝜂𝑡 =
1

𝐿𝑡
 

𝑖

𝐼𝑡

 𝜇𝑖

 𝐵𝑡 =
𝐿𝑡
𝐿𝑡 + 1
 𝜂𝑡 +
1

𝐿𝑡 + 1
𝑏 𝐿𝑡+1

Theorem (Logarithmic regret and logarithmic “pull regret”)

« The S-MAB has logarithmic regret and logarithmic pull regret, with respect to 

increasing time 𝑇, for any “base bandit” with logarithmic regret » (see proof in [3])

 S-TS and S-KL-UCB and S-UCB have logarithmic regret and pull regret

Experiments: We publish our benchmark data sets (see our GitHub repository)
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𝐿∗ = max
1≤𝐿≤𝐾
𝐿 𝑠. 𝑡.

 𝑖=1
𝐿 𝜇𝑖
𝐿
> 𝜂∗
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