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Scenario — Types of Outliers
Finding outliers = Cloud Local, global, and partition outliers
iIn decentralized data — A
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Local and centralized outlier detection are insufficient

Results
We could identify mistakes in operation and
unusual user behavior

m Centralized:

® Transfer data to central storage prior to outlier detection
m Able to detect each outlier type
m Problematic w.r.t. privacy and efficiency

m Local:

m Identify outliers in a single partition
m Data remains on the device — efficient and privacy-preserving o
a Only limited data available for outlier detection 2
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Research Question 10 20 30 40

outlier score
How can we find local, global, and partition outliers in decentralized data
without sharing raw data with other devices?

a Partition outlier: User performed the task very well

Normal
—— Qutliers (¢4, o = 0.05)

Figure: Partition outlier in powertool-data

a Local outliers: Minor deviation from regular usage
m Global outlier: User slipped off the screw-head

Solution Sketch
Combining federated and local outlier detectors

2. Qutlier scores for device i:
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1. Two outlier detectors L; and F:
® F: on single partition d
m L;: on entire network N with data
D = d, UdzU...UdUW using
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Federated Learning = e
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3. Distinguish point outliers: 4. |dentify partition outliers £ 25 1 local
a Global outlier if os,? > ¢; and os,’-j: > g m Sort os!, create bins of size b, % W —— global
= Local outlier if os; > ¢; and osj; < ¢; compute averages 01— . . . . . .
m Set of average scores is 0s; 48 49 50 51 52 53 54
® Mann-Whitney-U test between os} and time [s]
UkeN\i OS;, Figure: Local and global outlier in powertool-data
User Study
Connected Powertools Related Work
Protocol Outlier detectors m Server-coordinated [4] and peer-to-peer [6] Federated
a 15 participants m F and L;: single-layer Learning

m Federated Learning for outlier detection [8, 9, 7, 3]

m 20 screwing tasks; 20 Autoencoders

drilling tasks m Reconstruction error = m Other definition of “local”: outlier occurs multiple times
m Prespecified goals (e.g., Outlier score in .a small geographical region [3, 2, 10]
target depth) m Trained on features m Wireless Sensor Networks [1, 2]

m Acceleration, sound,
magnetic field, gyroscope

extracted from sensor data
In sliding windows of 25 ms

Data and Code

data https://github.com/heymarco/TandemOutlierDetection
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