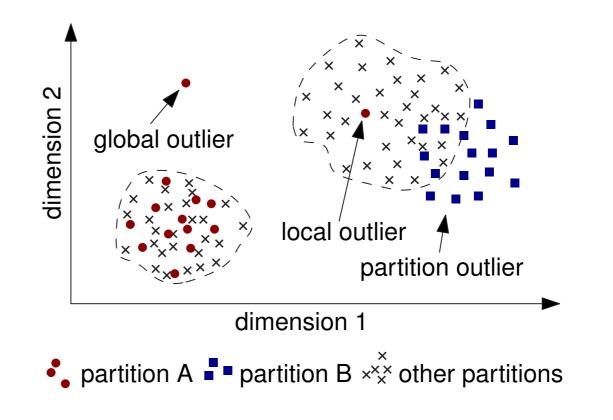

Tandem Outlier Detectors for Decentralized Data

Marco Heyden, Jürgen Wilwer, Edouard Fouché, Vadim Arzamasov, Steffen Thoma, Sven Matthiesen, and Thomas Gwosch

Scenario


Finding outliers in decentralized data

- Data creation is often decentralized
 - Smart meters, powertools, electric cars
- Each device holds part of the data generated in the network (a *partition*)
- What outliers exist in decentralized data and how can we find them?

Types of Outliers

Local, global, and partition outliers

Centralized:

- Transfer data to central storage prior to outlier detection
- Able to detect each outlier type
- Problematic w.r.t. privacy and efficiency
- Local:
 - Identify outliers in a single partition
 - Data remains on the device \rightarrow efficient and privacy-preserving
 - Only **limited data available** for outlier detection

Research Question

How can we find local, global, and partition outliers in decentralized data without sharing raw data with other devices?

Solution Sketch

Combining federated and local outlier detectors

- 1. Two outlier detectors L_i and F:
 - *F*: on single partition d_i
 - L_i : on entire network N with data $D = d_1 \cup d_2 \cup \ldots \cup d_{|N|}$ using Federated Learning
- 3. Distinguish point outliers:
 - Global outlier if $os_{ii}^L > \varepsilon_i$ and $os_{ii}^F > \varepsilon_i$
 - Local outlier if $os_{ii}^{L} > \varepsilon_{i}$ and $os_{ii}^{F} \le \varepsilon_{i}$

User Study Connected Powertools

Protocol

- 2. Outlier scores for device *i*:
 - $os_i^F = \{os_{i,1}^F, os_{i,2}^F, \dots, os_{i,|d_i|}^F\}$ $os_i^L = \{os_{i,1}^L, os_{i,2}^L, \dots, os_{i,|d_i|}^L\}$
- 4. Identify partition outliers
 - Sort os_i^F , create bins of size b, compute averages
 - Set of average scores is os^{*}_i
 - Mann-Whitney-U test between os^{*}; and $\bigcup_{k\in N\setminus i} os_k^*$

Results

We could identify mistakes in operation and unusual user behavior

Partition outlier: User performed the task very well

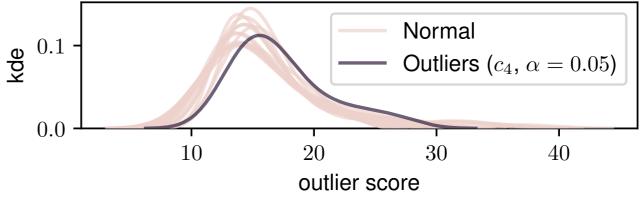


Figure: Partition outlier in powertool-data

- **Local outliers:** Minor deviation from regular usage
- Global outlier: User slipped off the screw-head

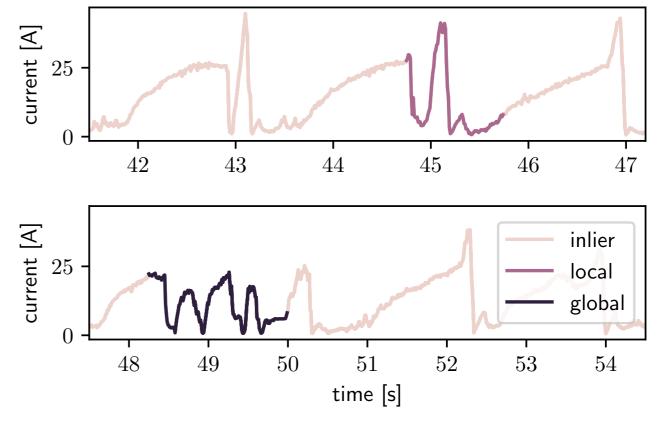
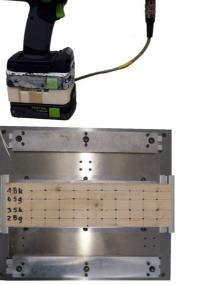


Figure: Local and global outlier in powertool-data


Related Work

Server-coordinated [4] and peer-to-peer [6] Federated Learning

- 15 participants
- 20 screwing tasks; 20 drilling tasks
- Prespecified goals (e.g., target depth)
- Acceleration, sound, magnetic field, gyroscope data
- F and L_i : single-layer Autoencoders

Outlier detectors

- Reconstruction error = Outlier score
- Trained on features extracted from sensor data in sliding windows of 25 ms

- Federated Learning for outlier detection [8, 9, 7, 5]
- Other definition of "local": outlier occurs multiple times in a small geographical region [3, 2, 10]
- Wireless Sensor Networks [1, 2]

Data and Code

https://github.com/heymarco/TandemOutlierDetection

References

- S. Bharti, K. K. Pattanaik, and A. Pandey. "Contextual outlier detection for [1] wireless sensor networks". In: J. Ambient Intell. Humaniz. Comput. (2020).
- H. H. W. J. Bosman, G. lacca, et al. "Spatial anomaly detection in sensor [2] networks using neighborhood information". In: Inf. Fusion (2017).
- N. Giatrakos et al. "TACO: tunable approximate computation of outliers in [3] wireless sensor networks". In: SIGMOD. 2010.
- B. McMahan et al. "Communication-Efficient Learning of Deep Networks from [8] [4] Decentralized Data". In: AISTATS. 2017.
- T. D. Nguyen, S. Marchal, et al. "DloT: A Federated Self-learning Anomaly [5] Detection System for IoT". In: ICDCS. 2019.
- Abhijit Guha Roy et al. "BrainTorrent: A Peer-to-Peer Environment for [6] Decentralized Federated Learning". In: CoRR abs/1905.06731 (2019).
- R. A. Sater and A. B. Hamza. "A Federated Learning Approach to Anomaly [7] Detection in Smart Buildings". In: CoRR (2020).
- J. Schneible and A. Lu. "Anomaly detection on the edge". In: *MILCOM*. 2017.
- S. Singh, S. Bhardwaj, et al. "Anomaly Detection Using Federated Learning". [9] In: ICAIA. 2021.
- X. Yu, H. Lu, et al. "An adaptive method based on contextual anomaly [10] detection in Internet of Things through wireless sensor networks". In: IJDSN (2020)

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

