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Problem Statement

The Challenge for Active Learning for Regression under Concept Drift:
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Once uncertainty is low, method stops measuring and learning unaware of drift.
→ Method gets stuck.

There is no way to detect a obsolete concept without expensive measurement of the 
target (such measurements are no longer performed). 
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Problem Statement (summary)

Concept Drift:

The learned function (concept) becomes obsolete after some time.

Active Learning:

There is no way to detect a obsolete concept without measuring the target.

Measuring the target is expensive.

User Requirement:

A user requires estimations for which estimation errors are below a “threshold of 
usefulness”

Estimations with higher error are harmful to follow-up tasks.
(Think of crops planted in supposedly good soil that all die because of bad soil quality)
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Research question

Concept Drift Expensive Measurements Require low estimation errors

Question
Maker
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Research question

Concept Drift Expensive Measurements Require low estimation errors

Question
Maker

How can we decide how often to measure the target
(adapt the measurement frequency)

while:
Keeping the number of measurements to a minimum,

Keeping prediction errors below a user-required threshold?
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Research question

Concept Drift Expensive Measurements Require low estimation errors

Question
Maker

Adapt measurement frequency.
Minimize expensive measurements.

Satisfy user-required threshold.
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Related Work

Concept Drift Expensive Measurements Require low estimation errors

Question
Maker

Adapt measurement frequency.
Minimize expensive measurements.

Satisfy user-required threshold.

Related work answers some of these points separately,
but has no answer for all in combination!
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Related Work (summary)
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Our Method

Remember: Active Learning without considered drift:
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Once uncertainty is low, method stops learning unaware of drift.
→ Method gets stuck.
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Our Method

We need to increase the uncertainty again! (preventing getting stuck)

We learn statistics about the drift behavior:

x

y
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Our Method

We need to increase the uncertainty again! (prevent getting stuck)
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Our Method

We use a N + 1 dimensional Gaussian Process Model.

N [1 … 5] dimensions for the Input Stream X.

1 dimension for the time t.

To model the increasing uncertainty over time we use a Brownian kernel        .

We use an RBF kernel         for modeling the input-target relation.

We use an RBF kernel          for weighting / quantifying how much impact the 
drift has on the output y for a given input x.

C (x , t )=I (x)+W (x)B (t )

B (t )     

I (t )     

W (t )     
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Our Method

Details:

We perform measurements once the estimated uncertainty reaches the user-
required threshold.

We recalibrate the Gaussian Process Model using the measurement history 
and the new measurement.
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Evaluation

We evaluate on five datasets commonly used for classification and 
adapted them to regression.

We evaluate on input streams with dimensions 1...5.

We compare against four baseline:

Consecutive Measurement (as used in practice).

Classic Active Learning (not considering drift).

A change detection approach AAIL [24] (adapted from classification).

A second change detection approach considering detection errors.

We evaluate each approach and each parameter configuration 50 times.
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Evaluation

Example one dimensional data:
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Evaluation

Results 
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Evaluation

Results 

Only DEAL and CM enable control of 
the user-required maximal error.
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Evaluation

Results 

Only DEAL and CM enable control of 
the user-required maximal error.

Over all datasets DEAL has the most 
stable performance.
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Evaluation

Results 

Only DEAL and CM enable control of 
the user-required maximal error.

Over all datasets DEAL has the most 
stable performance.

DEAL automatically adapts 
measurement frequency.
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Evaluation

Results 

Only DEAL and CM enable control of 
the user-required maximal error.

Over all datasets DEAL has the most 
stable performance.

DEAL automatically adapts 
measurement frequency.

For a given error-threshold DEAL 
requires on average, 20 times fewer 
measurements.
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Conclusion

Challenges:

The relationship between input and target variables may drift due to environmental 
influences that are not observed.

Current work on active learning does not consider this for continuous variables.

Our Contribution:

We proposed DEAL, a method that satisfies a given user-required prediction error 
threshold by adapting its measurement frequency to the drifting relationship.

DEAL requires, on average, 20 times fewer measurements than methods used in 
practice.

DEAL automatically adapts to changing drift behavior, preventing model degradation 
and improper set parameters.
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