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Motivation

Estimating dependency is fundamental in Data Mining, e.g.:

“Feature Selection”: Find good predictors (classification accuracy)

“Subspace Search”: Find relevant projections (outliers, clusters)

Real-world data often comes as a (high-dimensional) stream

Potentially unbounded, ever evolving

Generated at varying speed

Noisy, redundant

In streams, the timely detection of changes is crucial

e.g., “Predictive Maintenance”
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Example: Dependency Monitoring

Dependency often results from natural relationships

E.g., water in a cooling system

Pressure P and Temperature T

Dependency changes within (T, P ) either mean:

That the state of the system has changed

That equipment deteriorates, e.g., leaks

→ Helpful to detect outliers / abnormal behaviours !

Our goal: Propose an estimator suitable for streams

Motivation Related Work Contributions MCDE MWP Conclusion
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Requirements

Stream-related

(R1) Multivariate: 2+ variables

(R2) Efficient: Linear complexity (in the worst case)

(R3) Anytime: Interruption→ approximate results

General

(R4) General-purpose, e.g., not only linear dependencies
(R5) Intuitive

Parameters are easy to set
Results must be easy to interpret

(R6) Robust: Handle duplicates / imprecisions / noise

→ No existing approach fulfil them all !
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Related Work
Bivariate measures ( R1): Pearson, Spearman, MI, . . .

Multivariate Spearman (Schmid and Schmidt, 2007)
Limited to monotonous relationships ( R4)

Multivariate variants of Mutual Information ( R2,R5):
Interaction Information (II) (McGill, 1954)
Total Correlation (TC) (Watanabe, 1960)

Cumulative Mutual Information (CMI)
Multivariate Maximal Correlation (MAC)
Universal Dependency Score (UDS)

(Nguyen et al., 2013; 2014; 2015) ( R2,R5)

High-Contrast Subspaces (HiCS) (Keller et al., 2012) ( R5,R6)
Only used as “heuristic” to find outliers
(Keller, 2015) describes it as a potential dependency estimator
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Contributions

Monte Carlo Dependency Estimation (MCDE)

A general framework for estimating dependency

Estimate discrepancy between marginal/conditional distributions
using statistical tests via Monte Carlo simulations

Mann-Whitney P (MWP)

Instantiation of MCDE based on Mann-Whitney U

Extensive evaluation against state-of-the-art methods

→ Source code, data, experiments:
https://github.com/edouardfouche/MCDE
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Basic Definitions

Let S = {X1, . . . , Xd} be a set of d dimensions (subspace)

We see each i dimension as a random variable Xi

p(S) is the joint distribution

pXi(S) is the marginal distribution of Xi ∈ S

Independence: S is independent, if and only if:

p(S) =
∏
Xi∈S

pXi(S) (1)

⇔ p(S′|S′) = p(S′) ∀S′ ⊂ S (2)
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MCDE

Quantify (in)dependence by p(S′|S′) ?
= p(S′) ∀S′ ⊂ S

Problem: Difficult

|S′| > 1 requires multivariate density estimation

{S′ : S′ ⊂ S} grows exponentially with d

→ we need to be very efficient in the streaming setting

Thus, we make the following relaxation,

p(S′|S′) = p(S′) ∀S′ ⊂ S |S′| = 1 (3)

⇔ p(S|Xi) = pXi(S) ∀Xi ∈ S (4)

→ Our goal: p(S|Xi)
?
= pXi(S) ∀Xi ∈ S

Motivation Related Work Contributions MCDE MWP Conclusion
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MCDE

How to estimate “p(S|Xi)
?
= pXi(S)” ?

(Example: reference X1 ⇒ Xi ≡ X2)

1. Subspace Slice si

A set of conditions on Xi

“dimensionality-aware” slicing
s.t. E[|si|] ≡ E[|si|] under independence

2. Marginal Restriction ri
Condition on Xi

Reduce computational burden
Better capture local effects

3. Statistical test T (p̂(S|{si, ri}), p̂(S|{si, ri}))→ p-value

Motivation Related Work Contributions MCDE MWP Conclusion
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MCDE – Illustration

(a) Independent (b) Linear (c) Circle (d) Cross
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MCDE

Repeat M times, choosing reference Xi, slice si, restriction ri randomly.

Contrast: C(S) ≡ 1

M

M∑
m=1

[1− T (p̂(S|{si, ri}), p̂(S|{si, ri}))] (5)

Properties:

C(S) ∈ [0, 1]

Under independence, E[C(S)] = 0.5

C(S) converges to 1 as evidence against independence increases

Anytime flexibility: Pr (|C(S)− E[C(S)]| ≥ ε) ≤ 2e−2Mε2 (6)

(Derived from Hoeffding’s inequality (Hoeffding, 1963))

Motivation Related Work Contributions MCDE MWP Conclusion
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Mann-Whitney P (MWP)

MCDE, where T is a two-sided Mann-Whitney U test

Non-parametric (R4)

Operates on ranks (ordinal data)→ Robust (R6)

→ Requires indexing

MWP (S)

1: I ← CONSTRUCTINDEX(S) . O(d · n · log(n))
2: for m← 1 to M do
3: slice← SLICEANDRESTRICT(I) . O(d · n)
4: U-TEST(slice) . O(n)

5: return average of 1−U-TEST

d� n→ overall complexity: O(n · log(n) +M · n)

See (Fouché and Böhm, 2019) for further details.
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Evaluation – 12 Benchmark data sets

(a) Cross (C) (b) Double linear (Dl) (c) Hourglass (H)

(d) Hypercube (Hc) (e) Hc Graph (HcG) (f) Hypersphere (Hs)

(g) Linear (L) (h) Parabolic (P) (i) Sine (P=1) (S1)

(j) Sine (P=5) (S5) (k) Star (St) (l) Z inversed (Zi)

+ gaussian noise (0 ≤ σ ≤ 1)
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Evaluation – Distribution (1/2)
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Evaluation – Distribution (2/2)
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Evaluation – Scalability
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Conclusion

MS TC II CMI MAC UDS HiCS MWP
R1: Multivariate 3 3 3 3 3 3 3 3

R2: Efficient 3 7 7 7 7 7 3 3

R3: Anytime 7 7 7 7 7 7 3 3

R4: General-purpose 7 3 3 7 7 7 3 3

R5: Intuitive 3 7 7 7 7 7 7 3

R6: Robust 3 7 7 7 3 3 7 3

See (Fouché and Böhm, 2019) for further experiments:

w.r.t. number of iterations M

w.r.t. n, d, discrete data

Software, data: https://github.com/edouardfouche/MCDE

Motivation Related Work Contributions MCDE MWP Conclusion
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Future Work

“Extensions” of MCDE

“Sliding Window” MCDE→ requires efficient index operations

Handle mixed attribute types (i.e., not only numerical)

Possible applications of MCDE

Subspace Search in Streams
Helpful for Data Mining in “high-dimensional” streams
e.g., Outlier Detection, Clustering, Feature Selection

Mining Dependency Networks in Streams→ “Causal Discovery”
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