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This talk is about the Multi-Armed Bandit (MAB)
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The MAB is a well-known model for sequential decision making.

Work on bandits traces to back to (Thompson, 1933)
Theoretical guarantees remained unknown until recently

(Auer et al., 1995, 2002; Garivier and Moulines, 2008; Kaufmann et al., 2012)

We present an extension: The Scaling Multi-Armed Bandit (S-MAB)
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Use Case: Data Stream Monitoring

Bioliq power plant at KIT1

Biomass-to-Liquids

Pyrolysis: Biomass→ Biogas

A high-dimensional data stream:

> 800 sensors

1 new data point per second

Our goal: Monitor highly-correlated pairs in this stream

Code & data: https://github.com/edouardfouche/S-MAB

1https://bioliq.de
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The “Classical” MAB
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Let there be a set of K arms, [K ] = {1, . . . ,K}.
Each i ∈ [K ] is associated to a Bernouilli distribution B(µi); µi unknown.

At each round t = 1, . . . ,T :

The forecaster chooses one arm i ∈ [K ]

Then, she observes a reward Xt ∼ B(µi)

She updates her estimation µ̂i of µi

The goal of the forecaster is to maximize her total reward, i.e.,
∑T

t=1 Xt
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The MAB with Multiple Plays (MP-MAB)

MP-MAB: A model for online subset selection.

The forecaster plays L > 1 arms per round.

Extension discussed in (Uchiya et al., 2010; Komiyama et al., 2015).

Problem: L is fixed as an external parameter.

Typically, playing an arm is associated to a cost

User needs to set L

L is too large→ Cost > Reward
L is too small→ loss of potential gain

An “efficient” number of plays is unknown a priori!

Non-Static: The distribution parameters µ1, . . . , µK may vary over time.
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Real-world Applications

Data Stream Monitoring

Too much monitoring is a waste of resources

But events of interest might go unnoticed

arm: statistics, round: timestep, reward: interest

But also:

Online Advertisement

Financial Investment

Introduction Applications S-MAB Non-static Adaptation Evaluation Conclusion
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Problem Definition

Multiple-play MAB with efficiency constraint

Let be It ⊂ [K ] the set of arms played at time t , with |It | = Lt

Si(t) is the sum of the rewards from arm i up to time t

Goal: Maximize the reward subject to cost constraint

max
It⊂[K ]

∑
i∈It

Si(t) s.t. ηt =

∑
i∈It

µi

Lt
> η∗ (1)

If the forecaster always chooses the top-Lt arms, then the problem is equivalent
to finding the optimal number of plays L∗:

L∗ = max
1≤L≤K

L s.t.

∑L
i=1 µi

L
> η∗ (2)
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General Scaling Multi-Armed Bandit

Two components: finding the top-Lt + finding Lt (new)

At each round t = 1, . . . ,T :

1. The forecaster chooses It with |It | = Lt , and observes a reward vector Xt

2. She updates her estimation µ̂i for i ∈ It

3. She chooses Lt+1 (→ Scaling)

There exists many approaches for steps 1, 2:

Thompson Sampling (TS) (Thompson, 1933; Kaufmann et al., 2012)

UCB-type (Auer et al., 2002; Chen et al., 2016; Garivier and Cappé, 2011)

For step 3→We introduce a “scaling policy” (see next slide)
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Scaling Policy

Kullback-Leibler Scaling (KL-S)

Current play is below
efficiency threshold?

η̂t ≤ η∗

Lt+1 = Lt − 1

B̂t > η∗
yes

no

no

yes

Are we confident to still satisfy
η̂t ≤ η∗ if we play one more arm?

Lt+1 = Lt + 1

plays Lt arms

Start

Forecaster

Scale down Scale up
Lt+1 = Lt

Keep current scale

t = t +1

B̂t uses the Kullback-Leibler UCB (KL-UCB) index (Garivier and Cappé, 2011)
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Introduction Applications S-MAB Non-static Adaptation Evaluation Conclusion

Edouard Fouché∗ , Junpei Komiyama∗∗ & Klemens Böhm∗ – S-MAB August 8, 2019 9/18



Regret

How to evaluate our approach?

We want to minimize the multiple-play regret:

Reg(T ) =
T∑

t=1

 max
I⊆[K ],|I|=Lt

∑
i∈I

µi −
∑
i∈I(t)

µi


also, we want to minimize the “pull” regret (new):

PReg(T ) =
T∑

t=1

|L∗ − Lt |

Reg(T ) is small→ Top-L arms identification (step 1, 2)
PReg(T ) is small→ Scaling converges to L∗ (step 3)
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Main Result

Theorem (Logarithmic regret and pull regret)

The Scaling MAB has logarithmic regret and logarithmic pull regret, provided that the
underlying MAB has logarithmic regret, i.e., there exist two constants C1, C2 such that:

E[Reg(T )] ≤ C1 log T E[PReg(T )] ≤ C2 log T (3)

Scaling + “state-of-the-art MAB”→ logarithmic regret/pull regret.

For example: Thompson Sampling (TS) and UCB-type bandits.

Scaling + TS (Thompson, 1933)→ S-TS

Scaling + KL-UCB (Garivier and Cappé, 2011)→ S-KL-UCB
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Non-static Adaptation

Problem: The expectations µi of each arm i ∈ [K ] might change.

We use Adaptive Windowing (ADWIN) (Bifet and Gavaldà, 2007)

Maintain µ̂i for each arm over a sliding window of adaptive length

→ Scaling Thompson Sampling with ADWIN (S-TS-A)
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Evaluation – Synthetic (Static)

Static: K = 100 arms, T = 105, and µi distributed linearly in [0, 1]
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→ Scaling Bandits converge to optimal number of plays L∗

→ S-TS has the lowest regret
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Evaluation – Synthetic (Non-Static)

Non-Static: K = 100 arms, T = 105, “gradual” and “abrupt” changes
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→ Bandits based on ADWIN can adapt to gradual and abrupt changes
→ S-TS with ADWIN has the lowest regret
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Comparison: ε-Greedy (Sutton and Barto, 1998), discounted TS (dTS) (Raj and Kalyani,

2017), Sliding Window UCB (SW-UCB) (Garivier and Moulines, 2008)
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Evaluation – Real-world

Bioliq power plant – 20 sensors, 1 week monitoring
Mutual Information (MI) over sliding window

Window Size: 1000 points (∼ 15 minutes)
Step size: 100 points

Bandit as a “monitoring system”

If MI ≥ 2, Reward = 1

→ K = 190 arms, T = 6048
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Evaluation – Real-world
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→ Scaling of S-TS with ADWIN follows the scaling of the Oracle.

Introduction Applications S-MAB Non-static Adaptation Evaluation Conclusion
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Conclusion

Scaling Multi-Armed Bandit (S-MAB):
Leverage the Multiple-Play MAB with a “scaling policy”

Theoretical guarantee: Logarithmic regret and “pull regret”

We combine S-MAB with ADWIN (Bifet and Gavaldà, 2007)
Handle the non-static setting

Evaluation against a real-world use case
State-of-the-art performance
Code & data: https://github.com/edouardfouche/S-MAB
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	Introduction
	Applications
	S-MAB
	Non-static Adaptation
	Evaluation
	Conclusion
	Appendix
	References


