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This talk is about...

Karlsruhe Institute of Technology
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a For example: emails, news articles, research papers ...
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a Documents may be classified wrongly:

a Type M: Misclassification (wrong folder)
a Type O: Out-of-distribution (no adequate folder)

a We see those mistakes as semantic “outliers”
a We present an approach to mine both outliers types simultaneously
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Why are there such outliers? (1/2)

We drawning in data

® Document repositories have grown very large

a They tend to be highly multi-modal: many classes, folders

Number of articles on ArXiv

Karlsruhe Institute of Technology

Number of CS articles on ArXiv
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Data obtained from https://www.kaggle.com/Cornell-University/arxiv =} =) = = =
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https://www.kaggle.com/Cornell-University/arxiv

Why are there such outliers? (2/2) T

Karlsruhe Institute of Technology

Maintenance is difficult
® Human classification: sloppy, unreliable
a Handled by many/different users
a Different user — Different classification

2
2The Daily Struggle Meme — Jake Clark — Modified (ML/AI) [=] = = = El= vaQ
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Why are they difficult to find? (1/2) AT

Karlsr

Ambiguity
a Documents may have complex semantic
m Sometimes, the correct class is unknown yet, e.g., an emerging field
a Folder structures are domain/user-specific — unsupervised

3F{abbit and Duck — Fliegende Bléatter, 23 October 1892 — Public Domain
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Why are they difficult to find? (2/2) AIT

Type O/M must be detected simultaneously

[ | n X X
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Why are they difficult to find? (2/2) AIT

Type O/M must be detected simultaneously
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a Type O outliers may be detected as Type M by mistake
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Why are they difficult to find? (2/2) AIT

Type O/M must be detected simultaneously

M ® n
X [ | n XOX.M
o m o x
® M X X
o X . " M
u
° m x ® x
. O
° o = X

a Type O outliers may be detected as Type M by mistake
a The noise from Type M outliers hinders the detection of Type O
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Our Contributions ﬂ(“

We explore the problem of mining text outliers in document directories
m We are first to distinguish between Type O/M outliers
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We propose a new approach to detect text outliers
a kj-Nearest Neighbours (kj-NN)
a Exploit similarities between documents/phrases
a Extract semantic labels and similar documents — interpretability
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Our Contributions ﬂ(“

We explore the problem of mining text outliers in document directories
m We are first to distinguish between Type O/M outliers

We propose a new approach to detect text outliers
a kj-Nearest Neighbours (kj-NN)
a Exploit similarities between documents/phrases
a Extract semantic labels and similar documents — interpretability

We provide an extensive evaluation
a Improve the current state of the art (real-world/synthetic data)
a Interpretable results

Code & data: https://github.com/edouardfouche/MiningTextOutliers
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Related Work ﬂ(“
Type O (Out-of-distribution)

m “Standard” outlier detectors

a Distance- [KN98, RRS00], Neighbour- [BKNS00, KSZ08],
Probabilistic- [KS12, TB99], Subspace-based [SA18, KMB12]
a LOF [BKNS00], RS-Hash [SA18]
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m Text outlier detectors
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Related Work
Type O (Out-of-distribution)

m “Standard” outlier detectors

a Distance- [KN98, RRS00], Neighbour- [BKNS00, KSZ08],
Probabilistic- [KS12, TB99], Subspace-based [SA18, KMB12]
a LOF [BKNS00], RS-Hash [SA18]

m Text outlier detectors

a Von Mises-Fisher mixtures: VMF-Q [ZWT " 17]
a Non-negative Matrix Factorization: TONMF [KWAP17]
m Context Vector Data Description: CVDD [RZV " 19]

Type M (Misclassification)
m Received little attention, while ubiquitous!
a Can be extended from supervised text classification methods

® W-CNN [Kim14], VD-CNN [CSBL17], AT-RNN [ZST*16], RCNN [LXLZ15]
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Our Framework A

Karlsruhe Insttute of Technology.

Collection of documents
with initial classification

D,C,y:D—C

User Input

a Given: Documents D, Class C, initial classification y : D — C
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Our Framework

Collection of documents 1
with initial classification
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D,C,y:Dw—C P,V:0—R"

User Input Preprocessing

a Given: Documents D, Class C, initial classification y : D — C
m 1a. Extract relevant phrases P (AutoPhrase [SLJT18]), O = DU P
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User Input Preprocessing

a Given: Documents D, Class C, initial classification y : D — C
m 1a. Extract relevant phrases P (AutoPhrase [SLJT18]), O = DU P
m 1b. Learn joint embedding V : O — R™ (JOSE [MHW19])
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Our Framework AT

Karlsruhe Insttute of Technology.

Collection of documents 1 2
with initial classification . .

o
°
1 = m o =] | |
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° ° u 0.9 0.4 02
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D,C,y:D~C PV:0—R" r:PxC—R"
L ) L )
User Input Preprocessing

a Given: Documents D, Class C, initial classification y : D — C
m 1a. Extract relevant phrases P (AutoPhrase [SLJT18]), O = DU P
m 1b. Learn joint embedding V : O — R™ (JOSE [MHW19])

m 2. Mine representativeness r : P x C' +— RT,
r = integrity x popularity * distinctiveness (SegPhrase [ZH19])
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Our Framework AT

Collection of documents 1 2 3
with initial classification . . .
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User Input Preprocessing Outlier Detection

a Given: Documents D, Class C, initial classification y : D — C
m 1a. Extract relevant phrases P (AutoPhrase [SLJT18]), O = DU P
m 1b. Learn joint embedding V : O — R™ (JOSE [MHW19])

m 2. Mine representativeness r : P x C' +— RT,
r = integrity x popularity * distinctiveness (SegPhrase [ZH19])

a 3. Our method: kj-NN — O: Type O, Ml: Type M outlier sets
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The kj-Nearest Neighbours (1/2) KIT

Let K£(d) and 7 (d) be the k nearest documents and the j nearest
phrases of document d € D. For every class ¢ € C, compute:

o o
o
m° "
SCO')"ed’C = ° , m o o o
o
= mo "
]
o o °
u
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The kj-Nearest Neighbours (1/2) IT

Let K£(d) and 7 (d) be the k nearest documents and the j nearest
phrases of document d € D. For every class ¢ € C, compute:

neighbours of class c

K (d) o m ° °
(& = ° ™
_ ! o
scoreq . = E S(d,d") N
N—— )
/ . | | o
4" goc-doc cos sim ° m
o o °
u
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The kj-Nearest Neighbours (1/2) KIT

Let K£(d) and 7 (d) be the k nearest documents and the j nearest
phrases of document d € D. For every class ¢ € C, compute:

neighbours of class c

&) representat/veness o H ) °

SCOT€q c = Z S(d d/ Z S d,ap ( ) o.

doc doc cos sim P doc- phrase cos sim
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Let K£(d) and 7 (d) be the k nearest documents and the j nearest
phrases of document d € D. For every class ¢ € C, compute:

neighbours of class c

&) representat/veness o H ) °

SCOT€q c = Z S(d d/ Z S d,ap ( ) o.

doc doc cos sim P doc- phrase cos sim

and we predict §(d) = arg max ..o scoreq.c
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The kj-Nearest Neighbours (1/2) KIT

Let K£(d) and 7 (d) be the k nearest documents and the j nearest
phrases of document d € D. For every class ¢ € C, compute:

neighbours of class c

&) representat/veness ° ) °

SCOT€q c = Z S(d d/ Z S d,ap ( ) o.

doc doc cos sim P doc- phrase cos sim

and we predict §(d) = arg max ..o scoreq.c

Intuition: we maximise the posterior Pr(c|d), based on a posterior
Pr(c|d’) for each nearest documents that is proportional to the
representativeness r(p, c) of their nearest phrases. (See our paper)
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The kj-Nearest Neighbours (2/2) KIT

Problem: What to do with uncertain predictions? (scoreq . are similar Vc)
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The kj-Nearest Neighbours (2/2) IT

Problem: What to do with uncertain predictions? (scoreq . are similar Vc)

We compute the entropy of the prediction

C
I(d) = — g scoreq ¢ - log scoreq
(&
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The kj-Nearest Neighbours (2/2) KIT

Problem: What to do with uncertain predictions? (scoreq . are similar Vc)

We compute the entropy of the prediction

C
I(d) = — g scoreq ¢ - log scoreq
C
. . deD : I(d)<T’
and set threshold I, based on percentile p*, i.e., W =p*
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The kj-Nearest Neighbours (2/2) IT

Problem: What to do with uncertain predictions? (scoreq . are similar Vc)

We compute the entropy of the prediction

C
I(d) = — Z scoreq ¢ - log scoreq

C

and set threshold I, based on percentile p*, i.e., w = p*

a lfI(d) > T, thend € O
a Elseif (d) # y(d), thend € M
m Otherwise, d is an inlier
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The kj-Nearest Neighbours (2/2)

We compute the entropy of the prediction

C

Problem: What to do with uncertain predictions? (scoreq . are similar Vc)

I(d) = — Z scoreq ¢ - log scoreq

C

and set threshold I', based on percentile p*, i.e.,

a lfI(d) > T, thend € O
a Elseif (d) # y(d), thend € M
m Otherwise, d is an inlier

— kj-NN returns two lists of outliers @ and M.
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Experiment Setup IT

Karlsruhe Institute of Technology.

Goal: Evaluate kj-NN w.r.t. varying number of classes and outliers.
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Experiment Setup ﬂ(“

Goal: Evaluate kj-NN w.r.t. varying number of classes and outliers.

Two datasets, with many variants:

m NYT: 10,000 articles from the New York Times (5 topics).

u Inject 1%, 2%, 5% outliers from other 4 topics.
a Downsample the data by 50%, 20%, 10%.

a ARXIV: 21,467 abstracts published on ArXiv from 10 CS categories.

a Choose 1 to 5 inlier classes.
a Inject 1% outliers from the other classes.
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m NYT: 10,000 articles from the New York Times (5 topics).

u Inject 1%, 2%, 5% outliers from other 4 topics.
a Downsample the data by 50%, 20%, 10%.

a ARXIV: 21,467 abstracts published on ArXiv from 10 CS categories.

a Choose 1 to 5 inlier classes.
a Inject 1% outliers from the other classes.

We simulate Type M outliers by moving m% documents to another class.
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Experiment Setup ﬂ(“

Goal: Evaluate kj-NN w.r.t. varying number of classes and outliers.

Two datasets, with many variants:

m NYT: 10,000 articles from the New York Times (5 topics).

u Inject 1%, 2%, 5% outliers from other 4 topics.
a Downsample the data by 50%, 20%, 10%.

a ARXIV: 21,467 abstracts published on ArXiv from 10 CS categories.

a Choose 1 to 5 inlier classes.
a Inject 1% outliers from the other classes.

We simulate Type M outliers by moving m% documents to another class.

Measures: ROC AUC, Average Precision (AP), Recall/Precision at 1, 2, 5%
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Parameter Sensitivity

Influence of k, 7, p*
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Outlier Detection (Type O) A\ ¢

Karlsruhe Institute of Technology.

Table 1: Comparison w.r.t. our competitors (Type O, NYT).

| |AUC AP R1 R2 R5 | |AUC AP R1 R2 R5

LOF 66.45 1.62 3.00 3.00 9.00 60.91 1.77 2.00 6.00 12.00
RS-Hash 46.62 0.87 0.00 1.00 1.00 46.14 0.90 0.00 0.00 2.00
ANCS — | 66.63 257 6.00 10.00 21.00 3 |63.94 4.35 14.00 16.00 20.00
k-ANCS ; 83.89 3.65 3.00 7.00 19.00 | 81.08 4.43 12.00 14.00 20.00
TONMF  |Z= |58.66 7.30 0.00 2.00 9.00 E 61.42 31.01 0.90 0.90 4.90
VMF-Q 76.34 2.21 2.00 3.00 11.00 85.76 4.00 6.00 8.00 22.00
CVDD 78.47 7.75 11.7 18.09 22.34 76.29 15.89 21.62 27.03 29.73
kj-NN 92.51 17.57 25.00 39.20 61.40 93.33 27.76 37.20 46.80 62.80
LOF 60.66 245 2.00 2.50 6.00 74.76 412 5.00 5.00 15.00
RS-Hash 48.05 1.87 0.50 1.00 5.50 42.91 0.89 0.00 0.00 0.00
ANCS o | 67.59 5.19 8.00 12.00 18.00 & |78.52 5.60 10.00 15.00 40.00
k-ANCS | |82.51 5.94 3.00 5.50 14.50  |88.56 6.59 15.00 20.00 30.00
TONMF  |Z | 54.61 1.78 2.50 3.00 9.00 E 64.94 6.35 0.00 0.00 15.00
VMF-Q 83.67 6.87 4.00 11.00 20.00 83.98 4.59 5.00 10.00 20.00
CVvDD 73.10 10.00 11.58 14.74 22.11 88.83 24.00 25.00 25.00 25.00
kj-NN 94.51 42.64 30.40 44.50 64.50 91.42 6.57 3.00 11.00 38.00
LOF 52.28 5.44 1.80 3.40 7.00 77.93 2.77 0.00 0.00 20.00
RS-Hash 48.76 4.58 0.80 1.40 2.80 56.94 1.76 0.00 0.00 10.00

NCS w |67.67 11.13 6.60 9.80 19.20 © |83.89 13.65 30.00 40.00 40.00
k-ANCS |- |75.56 10.45 3.40 6.40 11.40 = |91.37 10.93 30.00 30.00 30.00
TONMF  |Z |52.95 1.50 1.40 2.40 6.40 Z |71.13 29.92 0.00 0.00 0.00
VMF-Q 7711 12.92 4.60 7.40 15.60 63.39 2.55 0.00 10.00 20.00
CVDD 72.81 18.69 9.04 13.05 21.49 85.13 44.99 42.86 42.86 42.86
kj-NN 97.04 71.69 19.12 36.96 68.28 91.52 8.45 10.00 16.00 38.00
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Outlier Detection (Type M) A\ ¢

Karlsruhe Institute of Technology.

Table 2: Comparison w.r.t. our competitors (Type M, NYT).

| |P R F1 R10 R20 | |P R F1 R10 R20
W-CNN 54.38 86.04 66.64 27.28 53.51 o |47.38 87.61 61.50 22.28 47.62
VD-CNN 9071 69.22 78.52 15.04 30.18 o | 98.58 55.44 70.97 49.31 54.95
AT-RNN > |67.12 51.88 58.52 32.92 51.34 £ 189.75 69.22 78.16 14.83 29.92
RCNN Z | 96.02 9.65 17.54 9.55 9.55 Z |57.46 87.31 69.31 27.23 56.93
kj-NN 95.93 90.02 92.88 50.19 90.02 95.78 90.36 92.99 50.22 90.36
W-CNN 54.16 88.02 67.06 27.30 54.56 o |39.34 91.56 55.03 20.54 40.59
VD-CNN ﬁ 88.99 69.69 7817 14.71 29.61 « | 93.50 81.80 87.26 15.20 30.81
AT-RNN > 180.36 49.03 60.90 40.29 48.14 ’; 50.44 85.11 63.34 25.25 52.23
RCNN Z | 89.60 5.59 10.52 5.49 5.49 Z |39.63 91.56 55.32 20.54 40.59
kj-NN 94.63 91.15 92.86 50.74 91.15 93.80 90.64 92.19 50.52 90.64
W-CNN 51.12 89.07 64.96 25.14 50.38 o |36.12 88.94 51.38 16.83 35.15
VD-CNN ﬁ 58.21 82.39 68.22 8.98 18.46 -~ | 86.20 69.40 76.89 14.10 27.26
AT-RNN > |61.71 70.49 65.81 31.38 61.62 ; 36.12 88.94 51.38 16.83 35.15
RCNN Z |90.82 44.93 60.12 42.86 42.86 Z |36.12 88.94 51.38 16.83 35.15
kj-NN 92.43 93.44 92.93 52.27 93.44 88.57 90.77 89.65 50.50 89.97

— See our paper for results w.r.t. the ARXIV benchmark and ablation analysis
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Interpretable results (1/2)

K

Karlsruhe Institute of Technology.

O (Education): NYC will
build a new home for one
of its premier high schools,
Stuyvesant, [...] under a
schedule that seeks to show
that its public schools can
be built fast and well, Mayor
Koch and Governor Cuomo
said yesterday.  The new
school, incorporating the lat-
est in modern laboratory
equipment, fiber optic sys-
tems and an olympic size
swimming pool will be built
[...] in lower manhattan,
with work to begin at the end

>

1st-NN  (Business):
Hong Kong on the first
floor of a hulking resi-
dential building, at the
end of a dimly lighted
corridor, a narrow door
opens up into Hong
Kong’s economic under-
belly [...]. Hong Kong’s
housing situation is now
one of the reasons the
government of Leung
Chun Ying, who took
the helm of the city s
administration last year,
is deeply unpopular. ..

2nd-NN (Politics): H
Praising the work of
young  scientists and

inventors [...], Presi-
dent Obama on
day announced a broad
plan to create and ex-
pand [...] initiatives
designed to encourage
children to study science,
technology, engineering
and mathematics. [...]
Obama said he was com-
mitted to giving students
the resources they need
to pursue education. . .

mon-

3rd-NN (Politics): Af-
ter [...] intense political
pressure, schools chan-
cellor Rudy Crew |[...]
said he would accept the
candidate. Dr.  crew
had provoked harsh crit-
icism last month when
[...] he used his new
veto power [...] to reject
Claire Mcintee, an ele-
mentary school principal
who was unanimously se-
lected [...] to be the
district’s top administra-

tor. ..

of next year. ..

\—> Top phrases: City, state, program, buildings, education, office, schools, year, project, company. . .
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Interpretable results (2/2) A

Karlsruhe Insttute of Technology.

Type O: Review of : Brigitte
Le Roux and Henry Rouanet, geo-
metric data analysis, from corre-

spondence analysis to structured

data analysis, ...

L'Top phrases: Data, paper,

challenges, learning, ...

Type O: The paper has been
withdrawn due to an error in
Lemma 1.

Type M (cs.AI — ¢s.CL): Open-text (or open-domain) semantic parsers
are designed to interpret any statement in natural language by inferring a cor-
responding meaning representation (MR). Unfortunately, large scale systems
cannot be easily machine-learned, due to lack of directly supervised data. We
propose here a method that learns to assign MRs to a wide range of text
(using a dictionary of more than 70,000 words, which are mapped to more
than 40,000 entities) thanks to a training scheme that combines learning from
WordNet and ConceptNet with learning from raw text. The model learns
structured embeddings of words, entities and MRs via a multi-task training
process operating on these diverse sources of data [...]. This work ends up
combining methods for knowledge acquisition, semantic parsing, and word-
sense disambiguation . ..

L'Top phrases: Problem, work,
error, conjecture, ...

Related Work

- Top phrases: Representations, word, semantic, model, embeddings, in-
formation, word embeddings, ...
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Conclusions AT

Karlsruhe Insttute of Technology.

a Mining text outliers is difficult: manifold, domain-specific, unsupervised

a Outliers fall into two types: Out-of-distribution (O), Misclassification (M)
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Conclusions ﬂ(“

a Mining text outliers is difficult: manifold, domain-specific, unsupervised

a Outliers fall into two types: Out-of-distribution (O), Misclassification (M)

m Our approach, kj-NN, is the first one to detect both types

a Exploit document/phrase similarities
a Improved performance, compared to existing work
a Results are interpretable
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Conclusions ﬂ(“

a Mining text outliers is difficult: manifold, domain-specific, unsupervised

a Outliers fall into two types: Out-of-distribution (O), Misclassification (M)

m Our approach, kj-NN, is the first one to detect both types

a Exploit document/phrase similarities
a Improved performance, compared to existing work
a Results are interpretable

a Future work: There are many possible extensions

a Other domains: Multivariate time series
m Other settings: Streams, multi-class, few shots. ..
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