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This talk is about. . .

Classifying documents into directories

For example: emails, news articles, research papers . . .

Jobs Research Fun

Email 3: Preparing your internship. . .
Email 2: Interview scheduling. . .

Email 4: Self-supervised methods. . .

Email 6: Support Vector Machines. . .
Email 7: Re: �e best cat memes. . .
Email 8: ICDM Registration. . .
Email 9: Get-together, RSVP. . .

Email 1: Re: Your application. . . Email 5: Fw: Grant Proposal. . .

Documents may be classified wrongly:

Type M: Misclassification (wrong folder)
Type O: Out-of-distribution (no adequate folder)

We see those mistakes as semantic “outliers”

We present an approach to mine both outliers types simultaneously

Introduction Related Work Our Method Experiments Conclusions
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Why are there such outliers? (1/2)

We drawning in data

Document repositories have grown very large

They tend to be highly multi-modal: many classes, folders
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Data obtained from https://www.kaggle.com/Cornell-University/arxiv

Introduction Related Work Our Method Experiments Conclusions
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Why are there such outliers? (2/2)

Maintenance is difficult

Human classification: sloppy, unreliable

Handled by many/different users

Different user→ Different classification

2

2
The Daily Struggle Meme – Jake Clark – Modified (ML/AI)
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Why are they difficult to find? (1/2)

Ambiguity

Documents may have complex semantic

Sometimes, the correct class is unknown yet, e.g., an emerging field

Folder structures are domain/user-specific→ unsupervised

3
Rabbit and Duck – Fliegende Blätter, 23 October 1892 – Public Domain
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Why are they difficult to find? (2/2)

Type O/M must be detected simultaneously

Type O outliers may be detected as Type M by mistake

The noise from Type M outliers hinders the detection of Type O
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Our Contributions

We explore the problem of mining text outliers in document directories

We are first to distinguish between Type O/M outliers

We propose a new approach to detect text outliers

kj-Nearest Neighbours (kj-NN)

Exploit similarities between documents/phrases

Extract semantic labels and similar documents→ interpretability

We provide an extensive evaluation

Improve the current state of the art (real-world/synthetic data)

Interpretable results

Code & data: https://github.com/edouardfouche/MiningTextOutliers
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Related Work
Type O (Out-of-distribution)

“Standard” outlier detectors

Distance- [KN98, RRS00], Neighbour- [BKNS00, KSZ08],
Probabilistic- [KS12, TB99], Subspace-based [SA18, KMB12]
LOF [BKNS00], RS-Hash [SA18]

Text outlier detectors

Von Mises-Fisher mixtures: VMF-Q [ZWT+17]
Non-negative Matrix Factorization: TONMF [KWAP17]
Context Vector Data Description: CVDD [RZV+19]

Type M (Misclassification)

Received little attention, while ubiquitous!

Can be extended from supervised text classification methods

W-CNN [Kim14], VD-CNN [CSBL17], AT-RNN [ZST+16], RCNN [LXLZ15]
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Our Framework

User Input Preprocessing Outlier Detection

with initial classi�cation
Collection of documents

0.9 0.4 0.2

1.

D,C, y : D 7→ C P, V : O 7→ Rn r : P × C 7→ R+ O,M

2. 3.

Given: Documents D, Class C, initial classification y : D 7→ C

1a. Extract relevant phrases P (AutoPhrase [SLJ+18]), O = D ∪ P

1b. Learn joint embedding V : O 7→ Rn (JoSE [MHW+19])

2. Mine representativeness r : P × C 7→ R+,
r = integrity ∗ popularity ∗ distinctiveness (SegPhrase [ZH19])

3. Our method: kj-NN→ O: Type O, M: Type M outlier sets

Introduction Related Work Our Method Experiments Conclusions
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Our Framework

User Input Preprocessing Outlier Detection

with initial classi�cation
Collection of documents

0.9 0.4 0.2

1.

D,C, y : D 7→ C P, V : O 7→ Rn r : P × C 7→ R+ O,M

2. 3.

Given: Documents D, Class C, initial classification y : D 7→ C

1a. Extract relevant phrases P (AutoPhrase [SLJ+18]), O = D ∪ P

1b. Learn joint embedding V : O 7→ Rn (JoSE [MHW+19])

2. Mine representativeness r : P × C 7→ R+,
r = integrity ∗ popularity ∗ distinctiveness (SegPhrase [ZH19])

3. Our method: kj-NN→ O: Type O, M: Type M outlier sets

Introduction Related Work Our Method Experiments Conclusions
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The kj-Nearest Neighbours (1/2)

Let K(d) and J (d) be the k nearest documents and the j nearest
phrases of document d ∈ D. For every class c ∈ C, compute:

scored,c =

neighbours of class c︷ ︸︸ ︷
Kc(d)∑

d′

S(d, d′)︸ ︷︷ ︸
doc-doc cos sim

J (d′)∑
p

S(d′, p)︸ ︷︷ ︸
doc-phrase cos sim

·
representativeness︷ ︸︸ ︷

r(p, c),

and we predict ŷ(d) = arg maxc∈C scored,c

Intuition: we maximise the posterior Pr(c|d), based on a posterior
Pr(c|d′) for each nearest documents that is proportional to the
representativeness r(p, c) of their nearest phrases. (See our paper)
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The kj-Nearest Neighbours (1/2)

Let K(d) and J (d) be the k nearest documents and the j nearest
phrases of document d ∈ D. For every class c ∈ C, compute:

scored,c =

neighbours of class c︷ ︸︸ ︷
Kc(d)∑

d′

S(d, d′)︸ ︷︷ ︸
doc-doc cos sim

J (d′)∑
p

S(d′, p)︸ ︷︷ ︸
doc-phrase cos sim

·
representativeness︷ ︸︸ ︷

r(p, c),
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The kj-Nearest Neighbours (2/2)

Problem: What to do with uncertain predictions? (scored,c are similar ∀c)

We compute the entropy of the prediction

I(d) = −
C∑
c

scored,c · log scored,c,

and set threshold Γ, based on percentile p∗, i.e., |{d∈D : I(d)<Γ}|
|D| = p∗

If I(d) > Γ, then d ∈ O
Else if ŷ(d) 6= y(d), then d ∈M
Otherwise, d is an inlier

→ kj-NN returns two lists of outliers O and M.

Introduction Related Work Our Method Experiments Conclusions
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→ kj-NN returns two lists of outliers O and M.
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Experiment Setup

Goal: Evaluate kj-NN w.r.t. varying number of classes and outliers.

Two datasets, with many variants:

NYT: 10,000 articles from the New York Times (5 topics).

Inject 1%, 2%, 5% outliers from other 4 topics.
Downsample the data by 50%, 20%, 10%.

ARXIV: 21,467 abstracts published on ArXiv from 10 CS categories.

Choose 1 to 5 inlier classes.
Inject 1% outliers from the other classes.

We simulate Type M outliers by moving m% documents to another class.

Measures: ROC AUC, Average Precision (AP), Recall/Precision at 1, 2, 5%
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Parameter Sensitivity

Influence of k, j, p∗
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Outlier Detection (Type O)

Table 1: Comparison w.r.t. our competitors (Type O, NYT).

AUC AP R1 R2 R5 AUC AP R1 R2 R5

LOF

N
Y

T-
1

66.45 1.62 3.00 3.00 9.00

N
Y

T-
50

60.91 1.77 2.00 6.00 12.00
RS-Hash 46.62 0.87 0.00 1.00 1.00 46.14 0.90 0.00 0.00 2.00
ANCS 66.63 2.57 6.00 10.00 21.00 63.94 4.35 14.00 16.00 20.00
k-ANCS 83.89 3.65 3.00 7.00 19.00 81.08 4.43 12.00 14.00 20.00
TONMF 58.66 7.30 0.00 2.00 9.00 61.42 31.01 0.90 0.90 4.90
VMF-Q 76.34 2.21 2.00 3.00 11.00 85.76 4.00 6.00 8.00 22.00
CVDD 78.47 7.75 11.7 18.09 22.34 76.29 15.89 21.62 27.03 29.73
kj-NN 92.51 17.57 25.00 39.20 61.40 93.33 27.76 37.20 46.80 62.80

LOF

N
Y

T-
2

60.66 2.45 2.00 2.50 6.00

N
Y

T-
20

74.76 4.12 5.00 5.00 15.00
RS-Hash 48.05 1.87 0.50 1.00 5.50 42.91 0.89 0.00 0.00 0.00
ANCS 67.59 5.19 8.00 12.00 18.00 78.52 5.60 10.00 15.00 40.00
k-ANCS 82.51 5.94 3.00 5.50 14.50 88.56 6.59 15.00 20.00 30.00
TONMF 54.61 1.78 2.50 3.00 9.00 64.94 6.35 0.00 0.00 15.00
VMF-Q 83.67 6.87 4.00 11.00 20.00 83.98 4.59 5.00 10.00 20.00
CVDD 73.10 10.00 11.58 14.74 22.11 88.83 24.00 25.00 25.00 25.00
kj-NN 94.51 42.64 30.40 44.50 64.50 91.42 6.57 3.00 11.00 38.00

LOF

N
Y

T-
5

52.28 5.44 1.80 3.40 7.00

N
Y

T-
10

77.93 2.77 0.00 0.00 20.00
RS-Hash 48.76 4.58 0.80 1.40 2.80 56.94 1.76 0.00 0.00 10.00
ANCS 67.67 11.13 6.60 9.80 19.20 83.89 13.65 30.00 40.00 40.00
k-ANCS 75.56 10.45 3.40 6.40 11.40 91.37 10.93 30.00 30.00 30.00
TONMF 52.95 1.50 1.40 2.40 6.40 71.13 29.92 0.00 0.00 0.00
VMF-Q 77.11 12.92 4.60 7.40 15.60 63.39 2.55 0.00 10.00 20.00
CVDD 72.81 18.69 9.04 13.05 21.49 85.13 44.99 42.86 42.86 42.86
kj-NN 97.04 71.69 19.12 36.96 68.28 91.52 8.45 10.00 16.00 38.00
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Outlier Detection (Type M)

Table 2: Comparison w.r.t. our competitors (Type M, NYT).

P R F1 R10 R20 P R F1 R10 R20

W-CNN

N
Y

T-
1

54.38 86.04 66.64 27.28 53.51

N
Y

T-
50

47.38 87.61 61.50 22.28 47.62
VD-CNN 90.71 69.22 78.52 15.04 30.18 98.58 55.44 70.97 49.31 54.95
AT-RNN 67.12 51.88 58.52 32.92 51.34 89.75 69.22 78.16 14.83 29.92
RCNN 96.02 9.65 17.54 9.55 9.55 57.46 87.31 69.31 27.23 56.93
kj-NN 95.93 90.02 92.88 50.19 90.02 95.78 90.36 92.99 50.22 90.36

W-CNN

N
Y

T-
2

54.16 88.02 67.06 27.30 54.56

N
Y

T-
20

39.34 91.56 55.03 20.54 40.59
VD-CNN 88.99 69.69 78.17 14.71 29.61 93.50 81.80 87.26 15.20 30.81
AT-RNN 80.36 49.03 60.90 40.29 48.14 50.44 85.11 63.34 25.25 52.23
RCNN 89.60 5.59 10.52 5.49 5.49 39.63 91.56 55.32 20.54 40.59
kj-NN 94.63 91.15 92.86 50.74 91.15 93.80 90.64 92.19 50.52 90.64

W-CNN

N
Y

T-
5

51.12 89.07 64.96 25.14 50.38

N
Y

T-
10

36.12 88.94 51.38 16.83 35.15
VD-CNN 58.21 82.39 68.22 8.98 18.46 86.20 69.40 76.89 14.10 27.26
AT-RNN 61.71 70.49 65.81 31.38 61.62 36.12 88.94 51.38 16.83 35.15
RCNN 90.82 44.93 60.12 42.86 42.86 36.12 88.94 51.38 16.83 35.15
kj-NN 92.43 93.44 92.93 52.27 93.44 88.57 90.77 89.65 50.50 89.97

→ See our paper for results w.r.t. the ARXIV benchmark and ablation analysis
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Interpretable results (1/2)

Top phrases: City, state, program, buildings, education, office, schools, year, project, company. . .

O (Education): NYC will
build a new home for one
of its premier high schools,
Stuyvesant, [. . . ] under a
schedule that seeks to show
that its public schools can
be built fast and well, Mayor
Koch and Governor Cuomo
said yesterday. The new
school, incorporating the lat-
est in modern laboratory
equipment, fiber optic sys-
tems and an olympic size
swimming pool will be built
[. . . ] in lower manhattan,
with work to begin at the end
of next year. . .

1st-NN (Business):
Hong Kong on the first
floor of a hulking resi-
dential building, at the
end of a dimly lighted
corridor, a narrow door
opens up into Hong
Kong’s economic under-
belly [. . . ]. Hong Kong’s
housing situation is now
one of the reasons the
government of Leung
Chun Ying, who took
the helm of the city ’s
administration last year,
is deeply unpopular. . .

2nd-NN (Politics):
Praising the work of
young scientists and
inventors [. . . ], Presi-
dent Obama on mon-
day announced a broad
plan to create and ex-
pand [. . . ] initiatives
designed to encourage
children to study science,
technology, engineering
and mathematics. [. . . ]
Obama said he was com-
mitted to giving students
the resources they need
to pursue education. . .

3rd-NN (Politics): Af-
ter [. . . ] intense political
pressure, schools chan-
cellor Rudy Crew [. . . ]
said he would accept the
candidate. Dr. crew
had provoked harsh crit-
icism last month when
[. . . ] he used his new
veto power [. . . ] to reject
Claire Mcintee, an ele-
mentary school principal
who was unanimously se-
lected [. . . ] to be the
district’s top administra-
tor. . .
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Interpretable results (2/2)

Type O: Review of : Brigitte
Le Roux and Henry Rouanet, geo-
metric data analysis, from corre-
spondence analysis to structured
data analysis, . . .

Type O: The paper has been
withdrawn due to an error in
Lemma 1.

Top phrases: Data, paper,
challenges, learning, . . .

Top phrases: Problem, work,
error, conjecture, . . .

Type M (cs.AI → cs.CL): Open-text (or open-domain) semantic parsers
are designed to interpret any statement in natural language by inferring a cor-
responding meaning representation (MR). Unfortunately, large scale systems
cannot be easily machine-learned, due to lack of directly supervised data. We
propose here a method that learns to assign MRs to a wide range of text
(using a dictionary of more than 70,000 words, which are mapped to more
than 40,000 entities) thanks to a training scheme that combines learning from
WordNet and ConceptNet with learning from raw text. The model learns
structured embeddings of words, entities and MRs via a multi-task training
process operating on these diverse sources of data [. . . ]. This work ends up
combining methods for knowledge acquisition, semantic parsing, and word-
sense disambiguation . . .

Top phrases: Representations, word, semantic, model, embeddings, in-
formation, word embeddings, . . .
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Conclusions

Mining text outliers is difficult: manifold, domain-specific, unsupervised

Outliers fall into two types: Out-of-distribution (O), Misclassification (M)

Our approach, kj-NN, is the first one to detect both types

Exploit document/phrase similarities
Improved performance, compared to existing work
Results are interpretable

Future work: There are many possible extensions

Other domains: Multivariate time series
Other settings: Streams, multi-class, few shots. . .
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