

Budgeted Multi-Armed Bandits with Asymmetric Confidence Intervals

Marco Heyden[∗] **, Vadim Arzamasov, Edouard Fouché, Klemens Böhm**

KDD '24 | 27. August 2024

Example Social media advertising

create marketing campaign \rightarrow users interact with ads \rightarrow pay advertising cost \rightarrow receive reward

Budgeted Multi-armed Bandits

While budget *B* **not empty:** Cost distributions
Reward distributions
Arms / Actions
Player play one of *K* arms **n** observe reward and cost adjust arm selection strategy **Goal: maximize the total reward until the available budget runs out** \Box \Box \Box \Box **Similar to traditional MABs, but:** Budget *B* determines length of the game \rightarrow length of game is no longer deterministic

Notation

General:

- *K*: Number of arms
- **B:** Available budget
- T_B : Number of plays until budget is empty
- *k*: Some arm

For each arm:

- $n_k(T)$: Number of plays of arm *k* until time step *T*
- $\mu_k^{\prime} \in [0,1), \mu_k^c \in (0,1]$: Expected rewards and costs
- $\bar{\mu}_k'(\mathcal{T}), \bar{\mu}_k^c(\mathcal{T})$: sample average of rewards and costs at time step *T*
- Let $\bm{\mathsf{arm}}$ 1 be the arm with the **highest reward-cost ratio** μ_k^r/μ_k^c , w.l.o.g.
- \blacksquare Maximize reward = **minimize regret** of playing arms $k > 1$:

$$
\text{Regret} = \sum_{i=1}^K \mu_k^c \Delta_k \mathbb{E}[n_k(T_B)], \quad \text{where } \Delta_k = \frac{\mu_1^r}{\mu_1^c} - \frac{\mu_k^r}{\mu_k^c}
$$

- **Playing any arm** $k > 1$ **leads to linear regret**
- **Sublinear regret = the algorithm "learns" something** \rightarrow this is what we want!

Related work Approaches adopt ideas from traditional MAB policies

Thompson sampling (a.k.a. posterior sampling) [\[Xia+15b\]](#page-16-0)

- Sample from posterior of arms' reward and cost distributions
- \blacksquare Play arm that maximizes ratio of the samples

UCB sampling (optimism in the face of uncertainty) [\[Xia+15a;](#page-15-0) [Xia+16;](#page-15-1) [Xia+17;](#page-16-1) [Wat+17;](#page-15-2) [Wat+18\]](#page-15-3)

- **Play arm with the highest UCB of reward-cost ratio**
- Optimism encourages exploration

Related work Existing UCB approaches have issues

The UCB for the reward-cost ratio should be

- **as accurate** as possible (UCB > expected value)
- as **tight** as possible

 \rightarrow but this is not the case.

Our approach Symmetric CIs lead to increased UCB for reward-cost ratio

8/17 August 27.08. 2024 Marco Heyden et al.: Budgeted Multi-Armed Bandits with Asymmetric Confidence Intervals Chair for Information Systems

Our approach Asymmetric confidence interval (illustration)

- Asymmetric CI \Rightarrow higher LCB of cost \Rightarrow tighter UCB of ratio
- \blacksquare η : variance parameter ($\eta = 1 \rightarrow$ Bernoulli random variable)
- Generalization of Wilson Score Interval [\[Wil27\]](#page-15-4)

Our approach ω -UCB and ω^* -UCB

While budget *B* **not empty:**

Play arm *k^t* :

$$
k_t = \arg \max_{k \in [K]} \Omega_k(\alpha, t), \quad \text{where } \Omega_k(\alpha, t) = \frac{\bar{\mu}_k'(t) + \text{asymmetric Cl of rewards}}{\bar{\mu}_k^c(t) - \text{asymmetric Cl of costs}}
$$

r

Observe reward *r^t* **and cost** *c^t*

Update parameters for CI calculation

- **■** Variant ω -UCB assumes maximum variance (e.g. Bernoulli random variable)
- ω^* -UCB uses observed variance to tighten CI
- **Scale CI of all arms s. th.** $\alpha(t) < 1$ $-$ √ $1 - t^{-\rho}$
	- **Ensures sufficient exploration of all arms**
	- ρ : exploration parameter (high $\rho \rightarrow$ more exploration)

Theoretical analysis

Proof structure (based on [\[Xia+17\]](#page-16-1))

- Bound number of suboptimal plays $\mathbb{E}(n_k(\tau))$
	- up to time step τ
- **Derive regret obtained until time step** τ
- **Choose** τ_B that is larger than T_B with high probability
- Bound regret for "extra long" games where $T_B > T_B$
- **Evaluate asymptotic behavior**

Asymptotic regret: The regret of ω-UCB is

$$
\text{Regret} \in \mathcal{O}\left(\mathcal{B}^{1-\rho}\right), \text{ for } 0 < \rho < 1; \qquad \text{Regret} \in \mathcal{O}(\log \mathcal{B}), \text{ for } \rho \geq 1
$$

Evaluation Setup

Competitors

- 8 competitors (the strongest ones)
- \blacksquare 4 ω -UCB variants
	- **best versions theoretically**
	- **best versions empirically**

Synthetic MAB environments

- **Bernoulli: rewards and costs follow Bernoulli** distributions
- Generalized Bernoulli: rewards and costs sampled from $\{0, 0.25, 0.5, 0.75, 1\}$
- Beta: rewards and costs sampled from Beta distributions

Social media advertising

- Expected rewards and costs derived from real-world social media advertising campaigns [\[Lem17\]](#page-14-0)
- Bernoulli and Beta distributed rewards and costs
- Below: KDE plot of a marketing campaign

Evaluation Results

Top: Bernoulli rewards / costs **Bottom:** rewards / costs drawn from $\{0, 0.25, ..., 1\}$

- \bullet ω -UCB has lower regret than competitors
- ω^* -UCB performs even better on Beta bandits
- \blacksquare Straight line = logarithmic growth (x-axis is log-scaled)

Wrapping up

Summary

- \blacksquare We propose ω -UCB, an **upper confidence bound sampling** policy that uses **asymmetric confidence intervals**
- Asymmetric confidence intervals lead to tighter estimation of UCB for reward-cost ratio
- Desirable theoretical properties and empirical performance

In the paper

- Definition and derivation of asymmetric intervals
- \blacksquare In-depth analysis (finite budget) and proofs
- **Pseudocode**
- Additional experiments

[Foundation](#page-1-0) **Example 20 The [Summary](#page-13-0)** [The approach](#page-7-0) [Analysis & Evaluation](#page-10-0) Summary Summary

Paper and code:

- doi.org/10.1145/3637528.3671833
- github.com/heymarco/OmegaUCB

GitHub

References I

- [1] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. "Finite-time Analysis of the Multiarmed Bandit Problem". In: *Mach. Learn.* 47.2-3 (2002), pp. 235–256. DOI: [https://doi.org/10.1023/A:1013689704352](https://doi.org/https://doi.org/10.1023/A:1013689704352).
- [2] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. "Bandits with Knapsacks". In: *FOCS*. IEEE Computer Society, 2013, pp. 207–216.
- [3] Wenkui Ding et al. "Multi-Armed Bandit with Budget Constraint and Variable Costs". In: *AAAI*. Vol. 27. AAAI Press, 2013, pp. 232–238. DOI: [10.1609/aaai.v27i1.8637](https://doi.org/10.1609/aaai.v27i1.8637).
- [4] Madis Lemsalu. *Facebook ad campaign*. howpublished: Kaggle (https://www.kaggle.com/madislemsalu/facebook-ad-campaign). 2017. URL: <https://www.kaggle.com/madislemsalu/facebook-ad-campaign> (visited on 01/05/2023).
- [5] Long Tran-Thanh et al. "Epsilon-First Policies for Budget-Limited Multi-Armed Bandits". In: *AAAI*. Vol. 24. AAAI Press, 2010. DOI: [10.1609/aaai.v24i1.7758](https://doi.org/10.1609/aaai.v24i1.7758).

References II

- [6] Long Tran-Thanh et al. "Knapsack Based Optimal Policies for Budget-Limited Multi-Armed Bandits". In: *AAAI*. Vol. 26. AAAI Press, 2012, pp. 1134–1140. DOI: [https://doi.org/10.1609/aaai.v26i1.8279](https://doi.org/https://doi.org/10.1609/aaai.v26i1.8279).
- [7] Ryo Watanabe et al. "KL-UCB-Based Policy for Budgeted Multi-Armed Bandits with Stochastic Action Costs". In: *IEICE Trans. Fundam. Electron. Commun. Comput. Sci.* 100-A.11 (2017), pp. 2470–2486.
- [8] Ryo Watanabe et al. "UCB-SC: A Fast Variant of KL-UCB-SC for Budgeted Multi-Armed Bandit Problem". In: *IEICE Trans. Fundam. Electron. Commun. Comput. Sci.* 101-A.3 (2018), pp. 662–667.
- [9] Edwin B. Wilson. "Probable Inference, the Law of Succession, and Statistical Inference". In: *Journal of the American Statistical Association* 22.158 (1927), pp. 209–212. DOI: [https://doi.org/10.2307/2276774](https://doi.org/https://doi.org/10.2307/2276774).
- [10] Yingce Xia et al. "Budgeted Bandit Problems with Continuous Random Costs". In: *ACML*. Vol. 45. JMLR Workshop and Conference Proceedings. JMLR.org, 2015, pp. 317–332.
- [11] Yingce Xia et al. "Budgeted Multi-Armed Bandits with Multiple Plays". In: *IJCAI*. IJCAI/AAAI Press, 2016, pp. 2210–2216.

References III

- [12] Yingce Xia et al. "Finite budget analysis of multi-armed bandit problems". In: *Neurocomputing* 258 (2017), pp. 13–29. ISSN: 0925-2312. DOI: [https://doi.org/10.1016/j.neucom.2016.12.079](https://doi.org/https://doi.org/10.1016/j.neucom.2016.12.079).
- [13] Yingce Xia et al. "Thompson Sampling for Budgeted Multi-Armed Bandits". In: *IJCAI*. AAAI Press, 2015, pp. 3960–3966.

Our approach Asymmetric confidence interval (definition)

Theorem (Asymmetric confidence interval for bounded random variables)

Let X be a random variable that falls in the interval $[m, M]$ *and has an unknown expected value* $\mu \in [m, M]$ *and variance* σ 2 *. Let z denote the number of standard deviations required to achieve* 1 − α *confidence in coverage of the standard normal distribution. Denote the sample mean of n iid samples of X as* $\bar{\mu}$. Then

$$
\Pr[\mu \not\in [\omega_-(\alpha), \omega_+(\alpha)]] \leq \alpha, \quad \text{with } \omega_\pm(\alpha) = \frac{B}{2A} \pm \sqrt{\frac{B^2}{4A^2} - \frac{C}{A}},
$$

where

$$
A = n + z^2 \eta, \quad B = 2n\bar{\mu} + z^2 \eta (M + m), \quad C = n\bar{\mu}^2 + z^2 \eta M m, \quad and
$$

$$
\eta = \frac{\sigma^2}{(M - \mu)(\mu - m)} \text{ if } \mu \in (m, M), \quad \text{and } \eta = 1 \text{ if } \mu \in \{m, M\}.
$$

Our approach Increasing the upper confidence bound over time

Intuition:

- Confidence intervals increase over time
- Guarantees that initially "unlucky" arms will be explored again at some point in the future
- Inspired by the UCB1-policy for "traditional" MABs [\[ACF02\]](#page-14-2)

Theorem (Time-adaptive confidence interval)

For an arm k, let μ'_k be its expected reward, μ'_k its expected cost, and $\Omega_k(\alpha,t)$ the upper confidence bound for μ'_k/μ^c_k , a s in Eq. [10.](#page-9-0) For $\rho,t>0$, and $\alpha(t) < 1-\sqrt{1-t^{-\rho}}$ it holds that

$$
\Pr\bigg[\Omega_k(\alpha,t)\geq \frac{\mu_k'}{\mu_k^c}\bigg]\geq 1-\alpha(t),
$$

that is, the upper confidence bound holds asymptotically almost surely.

Theoretical analysis Proof idea for worst-case regret

■ Playing a suboptimal arm *k* leads to expected "incremental" regret of $\mu_k^c \Delta_k$

Derive regret obtained until time step $τ$

■ Sum incremental regret over arms and time horizon

Find τ_B that is larger than T_B with high probability

- **Bound regret for "extra long" games where** $T_B > T_B$
	- Already done by [\[Xia+17\]](#page-16-1)

Evaluate asymptotic behavior of regret

Behavior of regret for $\tau_B \to \infty$

$$
\mathsf{Regret} = \sum_{i=1}^K \mu_k^c \Delta_k \mathbb{E}[\eta_k(\mathcal{T}_B)]
$$

Theoretical analysis Results (I)

Theorem (Number of suboptimal plays)

With ω -UCB, the expected number of plays of a suboptimal arm $k > 1$ before time step τ , $\mathbb{E}[n_k(\tau)]$, is upper-bounded *by:*

$$
\mathbb{E}[n_k(\tau)] \leq 1 + n_k^*(\tau) + \xi(\tau,\rho),
$$

where

$$
\xi(\tau,\rho) = (\tau - K) \left(2 - \sqrt{1 - \tau^{-\rho}}\right) - \sum_{t=K+1}^{\tau} \sqrt{1 - t^{-\rho}},
$$

$$
n_k^*(\tau) = \frac{8\rho \log \tau}{\delta_k^2} \max \left\{\frac{\eta_k'\mu_k'}{1 - \mu_k'}, \frac{\eta_k^c(1 - \mu_k^c)}{\mu_k^c}\right\}, \quad \delta_k = \frac{\Delta_k}{\Delta_k + \frac{1}{\mu_k^c}}
$$

and K and ∆*^k are defined as before.*

[References](#page-14-1)
0000000

,

Theoretical analysis Results (II)

Theorem (Worst-case regret)

Define $\tau_B=\left\lfloor{2B/\text{min}_{k\in[K]}\,\mu^c_k}\right\rfloor$ and $\Delta_k,n^*_k(\tau_B)$, and $\xi(\tau_B,\rho)$ as before. For any $\rho>0$, the regret of ω -UCB is *upper-bounded by*

$$
\mathsf{Regret} \leq \sum_{k=2}^K \Delta_k \left(1 + n_k^*(\tau_B) + \xi(\tau_B, \rho)\right) + \mathcal{X}(B) \sum_{k=2}^K \Delta_k + \frac{2\mu_1^r}{\mu_1^c},
$$
\n
$$
\text{where } \mathcal{X}(B) \text{ is in } \mathcal{O}\left(\frac{B}{\mu_{min}^c} e^{-0.5B\mu_{min}^c}\right).
$$

Theorem (Asymptotic regret)

The regret of ω*-UCB is*

$$
\textit{Regret} \in \mathcal{O}\left(B^{1-\rho}\right), \textit{ for } 0 < \rho < 1; \qquad \textit{Regret} \in \mathcal{O}(\log B), \textit{ for } \rho \geq 1
$$

Evaluation Competitors

Evaluation Budgeted MAB settings

Synthetic and real world Budgeted MAB settings

- Adopt synthetic evaluation settings from related work
- Use openly available social media advertising data [\[Lem17\]](#page-14-0)