

Budgeted Multi-Armed Bandits with Asymmetric Confidence Intervals

Marco Heyden*, Vadim Arzamasov, Edouard Fouché, Klemens Böhm

KDD'24 | 27. August 2024

www.kit.edu

Example Social media advertising

Foundation

00000

create marketing campaign ightarrow users interact with ads ightarrow pay advertising cost ightarrow receive reward

Chair for Information Systems

Summarv

Budgeted Multi-armed Bandits

00000

While budget *B* not empty: Cost distributions play one of K arms observe reward and cost Reward distributions adjust arm selection strategy Goal: maximize the total reward until the available budget runs out Arms / Actions Similar to traditional MABs, but: Budget B determines length of the game Player length of game is no longer deterministic \rightarrow Foundation

The approach Analysis & Evaluation

Summary o

Notation

General:

- K: Number of arms
- B: Available budget
- T_B: Number of plays until budget is empty
- k: Some arm

For each arm:

- $n_k(T)$: Number of plays of arm k until time step T
- $\mu_k^r \in [0, 1), \mu_k^c \in (0, 1]$: Expected rewards and costs
- µ
 _k
 ^r(T), µ
 _k
 ^c(T): sample average of rewards and costs at time step T
- Let arm 1 be the arm with the highest reward-cost ratio μ_k^r/μ_k^c , w.l.o.g.
- Maximize reward = minimize regret of playing arms k > 1:

$$\mathsf{Regret} = \sum_{i=1}^{\kappa} \mu_k^c \Delta_k \mathbb{E}[n_k(T_B)], \quad \text{ where } \Delta_k = \frac{\mu_1^r}{\mu_1^c} - \frac{\mu_k^r}{\mu_k^c}$$

The approach	Analysis & Evaluation	Summary O

- Playing any arm k > 1 leads to linear regret
- Sublinear regret = the algorithm "learns" something \rightarrow this is what we want!

Related work Approaches adopt ideas from traditional MAB policies

Thompson sampling (a.k.a. posterior sampling) [Xia+15b]

- Sample from posterior of arms' reward and cost distributions
- Play arm that maximizes ratio of the samples

UCB sampling (optimism in the face of uncertainty) [Xia+15a; Xia+16; Xia+17; Wat+17; Wat+18]

- Play arm with the highest UCB of reward-cost ratio
- Optimism encourages exploration

Foundation 0000●0	The approach	Analysis & Evaluation	Summary 0

Related work Existing UCB approaches have issues

The UCB for the reward-cost ratio should be

- as accurate as possible (UCB > expected value)
- as tight as possible

 \rightarrow but this is not the case.

Our approach Symmetric CIs lead to increased UCB for reward-cost ratio

Our approach Asymmetric confidence interval (illustration)

- Asymmetric CI \Rightarrow higher LCB of cost \Rightarrow tighter UCB of ratio
- η : variance parameter ($\eta = 1 \rightarrow \text{Bernoulli random variable})$
- Generalization of Wilson Score Interval [Wil27]

Summarv

Our approach ω -UCB and ω^* -UCB

While budget *B* not empty:

• Play arm k_t :

$$k_t = rg\max_{k \in [\kappa]} \Omega_k(\alpha, t), \quad \text{where } \Omega_k(\alpha, t) = rac{ar\mu_k^r(t) + ext{asymmetric CI of rewards}}{ar\mu_k^c(t) - ext{asymmetric CI of costs}}$$

Observe reward r_t and cost c_t

Update parameters for CI calculation

- Variant ω-UCB assumes maximum variance (e.g. Bernoulli random variable)
- ω^* -UCB uses observed variance to tighten CI
- Scale CI of all arms s. th. $\alpha(t) < 1 \sqrt{1 t^{-\rho}}$
 - Ensures sufficient exploration of all arms
 - ρ : exploration parameter (high $\rho \rightarrow$ more exploration)

FoundationThe approachAnalysis000000000000	& Evaluation Summary o
--	------------------------

Theoretical analysis

Proof structure (based on [Xia+17])

- Bound number of suboptimal plays $\mathbb{E}(n_k(\tau))$
 - up to time step τ
- Derive regret obtained until time step τ
- Choose τ_B that is larger than T_B with high probability
- Bound regret for "extra long" games where $T_B > \tau_B$
- Evaluate asymptotic behavior

Asymptotic regret: The regret of ω -UCB is

$$ext{Regret} \in \mathcal{O}\left(B^{1-
ho}
ight), ext{ for } 0 <
ho < 1; ext{ Regret} \in \mathcal{O}(\log B), ext{ for }
ho \geq 1$$

Foundation	The approach	Analysis & Evaluation	Summary
000000	000	●00	o

Evaluation Setup

Competitors

Foundation

- 8 competitors (the strongest ones)
- 4 ω-UCB variants
 - best versions theoretically
 - best versions empirically

Synthetic MAB environments

- Bernoulli: rewards and costs follow Bernoulli distributions
- Generalized Bernoulli: rewards and costs sampled from {0, 0.25, 0.5, 0.75, 1}
- Beta: rewards and costs sampled from Beta distributions

Social media advertising

- Expected rewards and costs derived from real-world social media advertising campaigns [Lem17]
- Bernoulli and Beta distributed rewards and costs
- Below: KDE plot of a marketing campaign

The approach

Evaluation Results

Top: Bernoulli rewards / costs **Bottom:** rewards / costs drawn from {0, 0.25, ..., 1}

- ω-UCB has lower regret than competitors
- ω*-UCB performs even better on Beta bandits
- Straight line = logarithmic growth (x-axis is log-scaled)

Foundation

Wrapping up

Summary

- We propose ω-UCB, an upper confidence bound sampling policy that uses asymmetric confidence intervals
- Asymmetric confidence intervals lead to tighter estimation of UCB for reward-cost ratio
- Desirable theoretical properties and empirical performance

In the paper

- Definition and derivation of asymmetric intervals
- In-depth analysis (finite budget) and proofs
- Pseudocode
- Additional experiments

Foundation 000000 The approach

Analysis & Evaluation

Summary

Paper and code:

- doi.org/10.1145/3637528.3671833
- github.com/heymarco/OmegaUCB

References I

- [1] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. "Finite-time Analysis of the Multiarmed Bandit Problem". In: *Mach. Learn.* 47.2-3 (2002), pp. 235–256. DOI: https://doi.org/10.1023/A:1013689704352.
- [2] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. "Bandits with Knapsacks". In: FOCS. IEEE Computer Society, 2013, pp. 207–216.
- [3] Wenkui Ding et al. "Multi-Armed Bandit with Budget Constraint and Variable Costs". In: AAAI. Vol. 27. AAAI Press, 2013, pp. 232–238. DOI: 10.1609/aaai.v27i1.8637.
- [4] Madis Lemsalu. Facebook ad campaign. howpublished: Kaggle (https://www.kaggle.com/madislemsalu/facebook-ad-campaign). 2017. URL: https://www.kaggle.com/madislemsalu/facebook-ad-campaign (visited on 01/05/2023).
- [5] Long Tran-Thanh et al. "Epsilon-First Policies for Budget-Limited Multi-Armed Bandits". In: AAAI. Vol. 24. AAAI Press, 2010. DOI: 10.1609/aaai.v24i1.7758.

References II

- [6] Long Tran-Thanh et al. "Knapsack Based Optimal Policies for Budget-Limited Multi-Armed Bandits". In: AAAI. Vol. 26. AAAI Press, 2012, pp. 1134–1140. DOI: https://doi.org/10.1609/aaai.v26i1.8279.
- [7] Ryo Watanabe et al. "KL-UCB-Based Policy for Budgeted Multi-Armed Bandits with Stochastic Action Costs". In: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100-A.11 (2017), pp. 2470–2486.
- [8] Ryo Watanabe et al. "UCB-SC: A Fast Variant of KL-UCB-SC for Budgeted Multi-Armed Bandit Problem". In: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101-A.3 (2018), pp. 662–667.
- [9] Edwin B. Wilson. "Probable Inference, the Law of Succession, and Statistical Inference". In: *Journal of the American Statistical Association* 22.158 (1927), pp. 209–212. DOI: https://doi.org/10.2307/2276774.
- [10] Yingce Xia et al. "Budgeted Bandit Problems with Continuous Random Costs". In: ACML. Vol. 45. JMLR Workshop and Conference Proceedings. JMLR.org, 2015, pp. 317–332.
- [11] Yingce Xia et al. "Budgeted Multi-Armed Bandits with Multiple Plays". In: IJCAI. IJCAI/AAAI Press, 2016, pp. 2210–2216.

References III

- [12] Yingce Xia et al. "Finite budget analysis of multi-armed bandit problems". In: Neurocomputing 258 (2017), pp. 13–29. ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.2016.12.079.
- [13] Yingce Xia et al. "Thompson Sampling for Budgeted Multi-Armed Bandits". In: IJCAI. AAAI Press, 2015, pp. 3960–3966.

Our approach Asymmetric confidence interval (definition)

Theorem (Asymmetric confidence interval for bounded random variables)

Let X be a random variable that falls in the interval [m, M] and has an unknown expected value $\mu \in [m, M]$ and variance σ^2 . Let z denote the number of standard deviations required to achieve $1 - \alpha$ confidence in coverage of the standard normal distribution. Denote the sample mean of n iid samples of X as $\overline{\mu}$. Then

$$\Pr[\mu \notin [\omega_{-}(\alpha), \omega_{+}(\alpha)]] \leq \alpha, \quad \text{with } \omega_{\pm}(\alpha) = \frac{B}{2A} \pm \sqrt{\frac{B^2}{4A^2} - \frac{C}{A}},$$

where

$$A = n + z^2 \eta, \quad B = 2n\overline{\mu} + z^2 \eta (M + m), \quad C = n\overline{\mu}^2 + z^2 \eta Mm, \quad and$$
$$\eta = \frac{\sigma^2}{(M - \mu)(\mu - m)} \text{ if } \mu \in (m, M), \quad and \ \eta = 1 \text{ if } \mu \in \{m, M\}.$$

Our approach Increasing the upper confidence bound over time

Intuition:

- Confidence intervals increase over time
- Guarantees that initially "unlucky" arms will be explored again at some point in the future
- Inspired by the UCB1-policy for "traditional" MABs [ACF02]

Theorem (Time-adaptive confidence interval)

For an arm k, let μ_k^r be its expected reward, μ_k^c its expected cost, and $\Omega_k(\alpha, t)$ the upper confidence bound for μ_k^r/μ_k^c , as in Eq. 10. For $\rho, t > 0$, and $\alpha(t) < 1 - \sqrt{1 - t^{-\rho}}$ it holds that

$$\Pr\left[\Omega_k(\alpha,t) \geq rac{\mu_k'}{\mu_k^c}
ight] \geq 1 - lpha(t),$$

that is, the upper confidence bound holds asymptotically almost surely.

Theoretical analysis Proof idea for worst-case regret

Bound number of suboptimal plays $\mathbb{E}(n_k(\tau))$ up to time step au

 Playing a suboptimal arm k leads to expected "incremental" regret of μ^c_kΔ_k

Derive regret obtained until time step $\boldsymbol{\tau}$

Sum incremental regret over arms and time horizon

Find τ_B that is larger than T_B with high probability

- Bound regret for "extra long" games where $T_B > \tau_B$
 - Already done by [Xia+17]

Evaluate asymptotic behavior of regret

• Behavior of regret for $\tau_B \to \infty$

$$\mathsf{Regret} = \sum_{i=1}^{K} \mu_k^c \Delta_k \mathbb{E}[n_k(T_B)]$$

Theoretical analysis Results (I)

Theorem (Number of suboptimal plays)

With ω -UCB, the expected number of plays of a suboptimal arm k > 1 before time step τ , $\mathbb{E}[n_k(\tau)]$, is upper-bounded by:

$$\mathbb{E}[n_k(\tau)] \leq 1 + n_k^*(\tau) + \xi(\tau, \rho),$$

where

$$\xi(\tau,\rho) = (\tau - K) \left(2 - \sqrt{1 - \tau^{-\rho}}\right) - \sum_{\mathbf{t}=\mathbf{K}+1}^{\tau} \sqrt{1 - t^{-\rho}},$$
$$\eta_k^*(\tau) = \frac{8\rho \log \tau}{\delta_k^2} \max\left\{\frac{\eta_k^r \mu_k^r}{1 - \mu_k^r}, \frac{\eta_k^c (1 - \mu_k^c)}{\mu_k^c}\right\}, \quad \delta_k = \frac{\Delta_k}{\Delta_k + \frac{1}{\mu_k^c}}$$

and *K* and Δ_k are defined as before.

Theoretical analysis Results (II)

Theorem (Worst-case regret)

Define $\tau_B = \lfloor 2B/\min_{k \in [K]} \mu_k^c \rfloor$ and Δ_k , $n_k^*(\tau_B)$, and $\xi(\tau_B, \rho)$ as before. For any $\rho > 0$, the regret of ω -UCB is upper-bounded by

$$\begin{aligned} & \textit{Regret} \leq \sum_{k=2}^{K} \Delta_k \left(1 + n_k^*(\tau_B) + \xi(\tau_B, \rho) \right) + \mathcal{X}(B) \sum_{k=2}^{K} \Delta_k + \frac{2\mu_1^r}{\mu_1^c}, \\ & \mathcal{X}(B) \textit{ is in } \mathcal{O}\left(\frac{B}{\mu_{\min}^c} e^{-0.5B\mu_{\min}^c} \right). \end{aligned}$$

Theorem (Asymptotic regret)

The regret of ω -UCB is

$$\textit{Regret} \in \mathcal{O}\left(B^{1-\rho}\right), \textit{ for } 0 < \rho < 1; \qquad \textit{Regret} \in \mathcal{O}(\log B), \textit{ for } \rho \geq 1$$

References

where

Evaluation Competitors

	Policy	Ref.	Evaluated
	ε-first	[Tra+10]	×
	KUBE	[Tra+12]	×
	UCB-BV1	[Din+13]	×
We compare our approach against existing	PD-BwK	[BKS13]	×
	Budget-UCB	[Xia+15a]	\checkmark
approaches	BTS	[Xia+15b]	\checkmark
We exclude:	MRCB	[Xia+16]	(√)
Poorly performing baselines	m-UCB	[Xia+17]	\checkmark
Older" versions of more recent approaches	b-greedy	[Xia+17]	\checkmark
	c-UCB	[Xia+17]	\checkmark
	i-UCB	[Xia+17]	\checkmark
	KL-UCB-SC+	[Wat+17]	(√)
	UCB-SC+	[Wat+18]	\checkmark
	ω -UCB	ours	\checkmark

Evaluation Budgeted MAB settings

	Туре	Distribution	Parameters	К	Used in
		Bernoulli	$\mathcal{U}(0,1)$	10 50 100	[Xia+15b; Xia+17] [Xia+17] [Xia+15a; Xia+15b]
	Synthetic	Generalized Bernoulli	$\mathcal{U}(0,1)$	10 50 100	[Xia+15b; Xia+16] [Xia+16] [Xia+15b]
		Beta	$\mathcal{U}(0,5)$	10 50 100	[Xia+17; Xia+16] [Xia+17; Xia+16] [Xia+15a]
	Facebook	Bernoulli	given	[2, 97]	-
		Beta	randomized	[2, 97]	-

Synthetic and real world Budgeted MAB settings

- Adopt synthetic evaluation settings from related work
- Use openly available social media advertising data [Lem17]

References ○○○○○○●