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Example ﬂ(IT

Social media advertising

create marketing campaign — users interact with ads — pay advertising cost — receive reward
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Budgeted Multi-armed Bandits

While budget B not empty:
® play one of K arms
® observe reward and cost
® adjust arm selection strategy

Goal: maximize the total reward until the
available budget runs out

Similar to traditional MABs, but:
® Budget B determines length of the game

— length of game is no longer deterministic
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Notation
General: For each arm:
® K: Number of arms ® 1, (T): Number of plays of arm k until time step T
® B: Available budget ® € [0,1), i € (0,1]: Expected rewards and costs
® Tg: Number of plays until budget is empty ® 7 (T), 15(T): sample average of rewards and costs
ok Some arm at time Step T
® Letarm 1 be the arm with the highest reward-cost ratio 1} /5, w.l.o.g.
® Maximize reward = minimize regret of playing arms k > 1:
- I
Regret = Z L AE[n(Ts)],  where Ay = =2 — =X
P M Mg
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Regret
What is desirable?

® Playing any arm k > 1 leads to linear regret
® Sublinear regret = the algorithm “learns” something — this is what we want!
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K
Regret = ZuﬁAkE[nk(TB)]

linear regret sublinear regret
Regret Regret
>, >,
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Related work A“(IT

Approaches adopt ideas from traditional MAB policies

Thompson sampling (a.k.a. posterior sampling) [Xia+15b]
® Sample from posterior of arms’ reward and cost distributions

® Play arm that maximizes ratio of the samples

rew/cost highest UCB
UCB sampling (optimism in the face of uncertainty) [Xia+15a; Xia+16; Xia+17; o BN

Wat+17; Wat+18] l I ¢ ]

® Play arm with the highest UCB of reward-cost ratio

»

® Optimism encourages exploration e
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Related work
Existing UCB approaches have issues

The UCB for the reward-cost ratio should be
® as accurate as possible (UCB > expected value)
® s tight as possible

—> but this is not the case.
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Our approach ] . ﬂ(IT

Symmetric Cls lead to increased UCB for reward-cost ratio

tight ratio UCB loose ratio UCB

UCB = average reward 4+ uncertainty ? /
~ average cost — uncertainty i

@ average rewards @ average costs
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Our approach
Asymmetric confidence interval (illustration) ﬂ IT
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& Asymmetric Cl = higher LCB of cost = tighter UCB of ratio

2
® 7): variance parameter (n = 1 — Bernoulli random variable) = ﬁ
® Generalization of Wilson Score Interval [Wil27] HI
n=1 n=0.1 7 =0.01
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Our approach ﬂ(IT

w‘ U C B an d w * - U C B Karlsruhe Institute of Technology

While budget B not empty:
® Play arm k;:
_ Jig(t) + asymmetric CI of rewards

k = arg max Qx(a, t), here Qu(a, t) = ==
' kgG[K]X (1) v (1) i (t) — asymmetric Cl of costs

® Observe reward r; and cost ¢;
® Update parameters for Cl calculation

® Variant w-UCB assumes maximum variance (e.g. Bernoulli random variable)
® "-UCB uses observed variance to tighten Cl

® Scale Clof allarms s.th. o) <1 — 1 — 77
® Ensures sufficient exploration of all arms
® p: exploration parameter (high p — more exploration)
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Theoretical analysis
Proof structure (based on [Xia+17]) © .

® Bound number of suboptimal plays E(nk(7)) 21000 Rl

. = ST e p
® up to time step T g 500 - T e 025
® Derive regret obtained until time step 7 g PRl o
® Choose 75 that is larger than Tz with high probability §’ e e B 1.0
T T --=- 20
® Bound regret for “extra long” games where Tz > 75 10 10
) ) Number of plays until budget is exhausted
® Evaluate asymptotic behavior

Asymptotic regret: The regret of w-UCB is

Regret € O (B'”), for0 < p < 1;  Regret € O(log B), for p > 1
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Evaluation
Setup

Competitors
® 8 competitors (the strongest ones)
® 4 w-UCB variants

® Dbest versions theoretically
® best versions empirically

Synthetic MAB environments
® Bernoulli: rewards and costs follow Bernoulli
distributions
® Generalized Bernoulli: rewards and costs sampled
from {0,0.25,0.5,0.75, 1}
@ Beta: rewards and costs sampled from Beta
distributions
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Social media advertising

@ Expected rewards and costs derived from
real-world social media advertising
campaigns [Lem17]

® Bernoulli and Beta distributed rewards and costs

a Below: KDE plot of a marketing campaign
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Wrapping up

Summary

® We propose w-UCB, an upper confidence bound sampling
policy that uses asymmetric confidence intervals

® Asymmetric confidence intervals lead to tighter estimation of UCB
for reward-cost ratio
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Paper and code:
@ doi.org/10.1145/3637528.3671833
® github.com/heymarco/OmegalUCB

® Desirable theoretical properties and empirical performance Paper GitHub
In the paper El E E E
& Definition and derivation of asymmetric intervals . :
® |n-depth analysis (finite budget) and proofs
® Pseudocode e
® Additional experiments
E%uggggon (Tjhoeg approach égegysis & Evaluation §ummary
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Asymmetric confidence interval (definition)

Theorem (Asymmetric confidence interval for bounded random variables)

Let X be a random variable that falls in the interval [m, M] and has an unknown expected value . € [m, M] and
variance 0. Let z denote the number of standard deviations required to achieve 1 — « confidence in coverage of the
standard normal distribution. Denote the sample mean of n iid samples of X as [i. Then

Prli & [0 (0), (@] < 0, withws(o) = o4/ 22— €

A=n+7n, B=2ni+2*n(M+m), C=np®+22nMm, and

0.2

M=) (u—m)

where

n ifp € (mM), andn=1ifue {m M}
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Our approach ﬂ(IT

Increasing the upper confidence bound over time

Intuition:
a Confidence intervals increase over time
® Guarantees that initially “unlucky” arms will be explored again at some point in the future
® |nspired by the UCB1-policy for “traditional” MABs [ACF02]

Theorem (Time-adaptive confidence interval)

For an arm k, let i}, be its expected reward, 11§ its expected cost, and Qi («, t) the upper confidence bound for i}, / i€,
asin Eq. 10. Forp,t > 0, and a(t) < 1 — v/1 — t=7 it holds that

Pr [Qk(a, t) > H_;;] >1—aft),
Mk

that is, the upper confidence bound holds asymptotically almost surely.
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Theoretical analysis
Proof idea for worst-case regret

Bound number of suboptimal plays E(n,(7)) up to time step 7

® Playing a suboptimal arm k leads to expected “incremental”
regret of pg Ay

Derive regret obtained until time step 7
® Sum incremental regret over arms and time horizon
Find 75 that is larger than Tz with high probability

® Bound regret for “extra long” games where Tg > 75
a Already done by [Xia+17]

Evaluate asymptotic behavior of regret
® Behavior of regret for 75 — 00

References
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Theorem (Number of suboptimal plays)

With w-UCB, the expected number of plays of a suboptimal arm k > 1 before time step T, E[nx(7)], is upper-bounded
by:

Eln(7)] <14 ng(7) +&(7, p),
where

£(r,p) = (T — K) (z — V1o Tfp) - i Vit

t=K+1
. 8plog T Mk (1 — pg) 5 — _ B
(1) = 52 max PE— A ey T
k Mk Mk kT e
and K and A are defined as before.
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Theorem (Worst-case regret)

Define 75 = |2B/minye(q 1§ | and A, n(7s), and (7s, p) as before. For any p > 0, the regret of w-UCB is
upper-bounded by

K K
2 r
Regret < Z Ay (14 ng(18) + &(78, p)) + X(B) Z A+ :1

c?
k=2 k=2 1

where X (B) is in O ( 8 e*O-SBuf.m)

c
Hmin

Theorem (Asymptotic regret)
The regret of w-UCB is

Regret€ O (B'~?), for0 < p <1;  Regret € O(logB), forp > 1
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Evaluation \“(IT
Competitors e STty
Policy Ref.  Evaluated
e-first [Tra+10] X
KUBE [Tra+12] X
UCB-BV1 [Din+13] X
. . PD-BwK [BKS13] X
® We compare our approach against existin
. ﬂ PP 9 9 Budget-UCB  [Xia+15a] v
approaches BTS  [Xia+15b] v
® We exclude: MRCB  [Xia+16] W)
® Poorly performing baselines m-UCB [Xia+17] v
® “Older” versions of more recent approaches b-greedy [Xia+17] v
c-UcB [Xia+17] v
i-UCB [Xia+17] v
KL-UCB-SC+  [Wat+17] V)
UCB-SC+  [Wat+18] v
w-UCB ours v
References
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Evaluation
Budgeted MAB settings

Synthetic and real world Bud-
geted MAB settings
® Adopt synthetic evaluation
settings from related work
® Use openly available social
media advertising
data [Lem17]
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Type Distribution Parameters K Usedin
10  [Xia+15b; Xia+17]
Bernoulli u(o,1) 50 [Xia+17]
100 [Xia+15a; Xia+15b]
Svntheti Generalized 10 [Xia+15b; Xia+16]
ynthetic )
Bernoull U(o,1) 50 [Xia+16]
100 [Xia+15b]
10 [Xia+17; Xia+16]
Beta U(o,5) 50 [Xia+17; Xia+16]
100 [Xia+15a]
B Ili i 2,97] -
Facebook ernoulli given [2,97]
Beta randomized  [2,97] -
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