
Vol.:(0123456789)

Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-023-00999-5

1 3

Adaptive Bernstein change detector for high‑dimensional
data streams

Marco Heyden1 · Edouard Fouché1 · Vadim Arzamasov1 · Tanja Fenn1 ·
Florian Kalinke1 · Klemens Böhm1

Received: 27 November 2022 / Accepted: 4 December 2023
© The Author(s) 2024

Abstract
Change detection is of fundamental importance when analyzing data streams.
Detecting changes both quickly and accurately enables monitoring and prediction
systems to react, e.g., by issuing an alarm or by updating a learning algorithm. How-
ever, detecting changes is challenging when observations are high-dimensional. In
high-dimensional data, change detectors should not only be able to identify when
changes happen, but also in which subspace they occur. Ideally, one should also
quantify how severe they are. Our approach, ABCD, has these properties. ABCD
learns an encoder-decoder model and monitors its accuracy over a window of adap-
tive size. ABCD derives a change score based on Bernstein’s inequality to detect
deviations in terms of accuracy, which indicate changes. Our experiments dem-
onstrate that ABCD outperforms its best competitor by up to 20% in F1-score on
average. It can also accurately estimate changes’ subspace, together with a severity
measure that correlates with the ground truth.

Keywords Change detection · Concept drift · Data streams · High-dimensionality

Responsible editor: Charalampos Tsourakakis.

 * Marco Heyden
 marco.heyden@kit.edu

 Edouard Fouché
 edouard.fouche@kit.edu

 Vadim Arzamasov
 vadim.arzamasov@kit.edu

 Tanja Fenn
 tanja.fenn@kit.edu

 Florian Kalinke
 florian.kalinke@kit.edu

 Klemens Böhm
 klemens.bohm@kit.edu

1 Karlsruhe Institute of Technology, Karlsruhe, Germany

http://orcid.org/0000-0003-4981-709X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-023-00999-5&domain=pdf

 M. Heyden et al.

1 3

1 Introduction

Data streams are open-ended, ever-evolving sequences of observations from some
process. They pose unique challenges for analysis and decision-making. One cru-
cial task is to detect changes, i.e., shifts in the observed data, that may indicate a
change in the underlying process. Change detection has been an active research area.
However, the high-dimensional setting, in which observations contain a large num-
ber of simultaneously measured quantities, did not receive enough attention. Yet, it
may yield useful insights in environmental monitoring (de Jong and Bosman 2019),
human activity recognition (Vrigkas et al. 2015), network traffic monitoring (Naseer
et al. 2020), automotive (Liu et al. 2019), predictive maintenance (Zhao et al. 2018),
and biochemical engineering (Mowbray et al. 2021):
Example (Biofuel production) The production of fuel from biomass is a complex
process comprising many interdependent process steps. Those include pyrolysis,
synthesis, distillation, and separation. Many steps rely on (by-)products of other
steps as reactants, leading to a highly interconnected system with many process
parameters. A monitoring system tracks the process parameters to detect failures in
the plant: (i) The system must detect changes in a large (i.e., high-dimensional) vec-
tor of process parameters, which may indicate failures. (ii) The system must find out
which process parameters are affected by the change to allow for a targeted reaction.
Since the system is very complex and has many interconnected components, change
is often evident only when considering correlations between process parameters. An
example would be the correlation between temperature and concentration fluctua-
tions. So it is insufficient to monitor each process parameter in isolation. (iii) There
can exist slight changes which only require minor adjustments and more severe ones
that require immediate intervention to avoid a shutdown of the plant. The monitor-
ing system should provide an estimate of the severity of change.

The example illustrates three requirements for modern change detectors:

• R1: Change point The primary task of change detectors is to identify that the
data stream has changed and when it occurred.

• R2: Change subspace A change may only concern a subset of dimensions—the
change subspace. Change detectors for high-dimensional data streams should be
able to identify such subspaces.

• R3: Change severity Quantifying relative change severity to distinguish between
changes of different importance is essential to react appropriately.

Prior works already acknowledge the relevance of the above requirements (Lu et al.
2019; Webb et al. 2018). However, fulfilling R1–R3 in combination remains chal-
lenging since they depend on each other: on the one hand, detecting changes in
high-dimensional data is difficult because changes typically only affect few dimen-
sions. Unaffected dimensions “dilute” a change (i.e., a change occuring in a sub-
space appears to be less severe in the full space). This might make changes harder
to detect in all dimensions. On the other hand, detecting the change subspace should

1 3

Adaptive Bernstein change detector for high-dimensional…

occur after detecting a change, since monitoring all possibles subspaces is intracta-
ble. Last, one should restrict computation of change severity to the change subspace
to eliminate dilution.

Existing methods for change detection, summarized in Table 1, either are uni-
variate (UV), multivariate (MV), or specifically designed for high-dimensional data
(HD); the latter claim efficiency w.r.t. high-dimensionality or resilience against the
“curse of dimensionality”. However, they do not fulfill R1–R3 in combination suf-
ficiently well as Sect. 2 describes.

Thus, we propose the Adaptive Bernstein Change Detector (ABCD), which
addresses R1–R3 in combination. We articulate our contributions as follows:

(i) Problem Definition We formalize the problem of detecting changes in high-
dimensional data streams such that R1-R3 can be tackled in combination. (ii) Adap-
tive Bernstein Change Detector We present ABCD, a change detector for high-
dimensional data, that satisfies R1–R3. It monitors the loss of an encoder-decoder
model using an adaptive window size and statistical testing. Adaptive windows ena-
ble ABCD to detect severe changes quickly and, over a longer period, identify hard-
to-detect changes that would typically require a large window size. (iii) Bernstein
change score Our approach applies a statistical test based on Bernstein’s inequality.
This limits the probability of false alarms. (iv) Online computation We propose an
efficient method for computing the change score in adaptive windows and discuss
design choices leading to constant time and memory. (v) Benchmarking We con-
duct experiments on 10 data streams based on real-world and synthetic data with
many dimensions and compare ABCD with recent approaches. The results indicate
that ABCD outperforms its competitors consistently w.r.t. R1–R3, is robust to high-
dimensional data and is useful in domains including human activity recognition, gas
detection, and image processing. We also study ABCD’s parameter sensitivity. Our

Table 1 Related work Approach References Type R1 R2 R3

ADWIN Bifet and Gavaldà (2007) UV ✓ – –
SeqDrift2 Pears et al. (2014) UV ✓ – –
kdq-Tree Dasu et al. (2006) MV ✓ – ✓

PCA-CD Qahtan et al. (2015) MV ✓ – ✓

IKS dos Reis et al. (2016) MV ✓ ✓ –
LDD-DSDA Liu et al. (2017) MV ✓ – –
AdwinK Faithfull et al. (2019) MV ✓ ✓ –
D3 Gözüaçık et al. (2019) MV ✓ – ✓

ECHAD Ceci et al. (2020) MV ✓ – ✓

IBDD de Souza et al. (2020) HD ✓ – ✓

WATCH Faber et al. (2021) HD ✓ – ✓

ABCD This work HD ✓ ✓ ✓

 M. Heyden et al.

1 3

code1 follows the popular Scikit-Multiflow API (Montiel et al. 2018), so it is easy to
use in future research.

2 Related work

2.1 Change detector types

Most existing change detectors are supervised, i.e., they focus on detecting changes
in the relationship between input data and a target variable (Iwashita and Papa 2019).
However, class labels are rarely available in reality, which limits their applicability.
On the contrary, the unsupervised change detectors aim to detect changes only in
the input data. Our approach belongs to this category, so we restrict our review to
unsupervised approaches.

Most existing approaches detect changes whenever a measure of discrepancy
between newer observations (the current window) and older observations (the ref-
erence window) exceeds a threshold. Some approaches, e.g., D3 (Gözüaçık et al.
2019) or PCA-CD (Qahtan et al. 2015), implement the reference and current win-
dow as two contiguous sliding windows. Other approaches, such as IBDD (de Souza
et al. 2020), IKS (dos Reis et al. 2016) or WATCH (Faber et al. 2021) use a fixed
reference window. A major problem is to choose the appropriate size for the win-
dow; thus Bifet and Gavaldà (2007) propose windows of adaptive size, that grow
while the stream remains unchanged and shrink otherwise. Several work lever-
age this principle, e.g. (Sun et al. 2016; Khamassi et al. 2015; Fouché et al. 2019;
Suryawanshi et al. 2022). We also use adaptive windows to lower the number of
parameters of ABCD.

2.2 Univariate change detection

There exist many approaches for change detection in univariate (UV) data
streams. Two of them, Adaptive Windowing (ADWIN) (Bifet and Gavaldà 2007)
and SeqDrift2 (Pears et al. 2014), share some similarity with our approach. Like
ADWIN, ABCD relies on an adaptive window. Like SeqDrift2, it uses Bernstein’s
inequality (Bernstein 1924). But unlike ADWIN and SeqDrift2, ABCD can handle
high-dimensional data while fulfilling R1-R3.

2.3 Multivariate change detection

To detect changes in multivariate (MV) data, some approaches apply univari-
ate algorithms in each dimension of the stream. Faithfull et al. (2019) propose
to use one ADWIN detector per dimension (with k dimensions). They declare a
change whenever a certain fraction of the detectors agree. We call this approach

1 https:// github. com/ heyma rco/ Adapt iveBe rnste inCha ngeDe tector.

https://github.com/heymarco/AdaptiveBernsteinChangeDetector

1 3

Adaptive Bernstein change detector for high-dimensional…

AdwinK later on. Similarly, IKS (dos Reis et al. 2016) uses an incremental
variant of the Kolmogorov–Smirnov test deployed in each dimension. Unlike
AdwinK, IKS issues an alarm if at least one dimension changes.

There also exist approaches specifically designed for multivariate (Jaworski
et al. 2020; Ceci et al. 2020; Qahtan et al. 2015; Gözüaçık et al. 2019; Dasu
et al. 2006), or even high-dimensional (HD) data (Faber et al. 2021; de Souza
et al. 2020).

Similar to ABCD, Jaworski et al. (2020) and Ceci et al. (2020) use dimen-
sionality-reduction methods to capture the relationships between dimensions.
However, our approach is computationally more efficient, limits the probability
of false alarms, identifies change subspace, and estimates change severity. D3
(Gözüaçık et al. 2019) uses the AUC-ROC score of a discriminative classifier
that tries to distinguish the data in two sliding windows. It reports a change if
the AUC-ROC score exceeds a pre-defined threshold. PCA-CD (Qahtan et al.
2015) first maps observations in two windows to fewer dimensions using PCA.
Then the approach estimates the KL-divergence between both windows for each
principal component. PCA-CD detects a change if the maximum observed KL-
divergence exceeds a threshold. However, Goldenberg and Webb (2019) point
out that this technique is limited to linear transformations and ignores combined
change in multiple dimensions. LDD-DSDA (Liu et al. 2017) measures the
degree of local drift that describes regional density changes in the input data.
The approach proposed by Dasu et al. (2006) structures observations from two
windows (sliding or fixed) in a kdq-tree. For each node, they measure the KL-
divergence between observations from both windows. However, Qahtan et al.
(2015) show experimentally that this approach is not suitable for high-dimen-
sional data.

IBDD (de Souza et al. 2020) and WATCH (Faber et al. 2021) specifically
address challenges arising from high-dimensional data. The former monitors the
mean squared deviation between two equally sized windows. The latter monitors
the Wasserstein distance between a reference and a sliding window. However,
both cannot detect change subspaces or measure severity.

2.4 Offline change point detection

Offline change point detection, also known as signal segmentation, divides time
series of a given length into K homogeneous segments (Truong et al. 2020).
Many of the respective algorithms are not suitable for data streams: Some
require specifying K a priori (Bai and Perron 2003; Harchaoui and Cappe 2007;
Lung-Yut-Fong et al. 2015); others (Killick et al. 2012; Lajugie et al. 2014; Mat-
teson and James 2014; Chakar et al. 2017; Garreau and Arlot 2018) scale super-
linearly with time. WATCH (Faber et al. 2021), discussed above, is the state of
the art extension of offline change point detection to data streams.

 M. Heyden et al.

1 3

2.5 Change subspace

The notion of a change subspace is different from the existing notion of change
region (Lu et al. 2019). The former describes a subset of dimensions that changed,
the latter identifies density changes in some local region, e.g., a hyper-rectangle
or cluster (Liu et al. 2017). Our definition of change subspaces is related to mar-
ginal change magnitude (Webb et al. 2018), but is more general since it can also
accomodate changes in a subspace’s joint distribution.

Because high-dimensional spaces are typically sparse (due to the curse of
dimensionality), identifying density changes in them is not effective. On the other
hand, knowing that a change affected a specific set of dimensions can help iden-
tify the cause of the change, as we have motivated in our introductory example.
Thus, we focus on detecting change subspaces in this work.

In the domain of statistical process control, some approaches extend well-
known methods, such as Cusum (Page 1954) or Shewhart charts (Shewhart
1930), to multiple dimensions. They address the problem of identifying change
subspaces to some extent, however, they often make unrealistic assumptions: they
focus on Gaussian or sub-Gaussian data (Chaudhuri et al. 2021; Xie et al. 2020),
require that different dimensions are initially independent (Chaudhuri et al.
2021), require subspace changes to be of low rank (Xie et al. 2020), or assume
that the size of the change subspace is known a priori (Jiao et al. 2018).

From the approaches reviewed in Sect. 2.3 only AdwinK and IKS identify the
corresponding change subspace. However, both approaches do not find changes
that hide in subspaces, e.g., correlation changes, because they monitor each
dimension in isolation. In contrast, our approach aims to learn the relationships
between different dimensions so that it can detect such changes. Next, AdwinK
cannot identify subspaces with fewer than k dimensions.

2.6 Change severity

According to Lu et al. (2019), change severity is a positive measure of the dis-
crepancy between the data observed before and after the change. One can
either measure the divergence between distributions directly, as done by kdq-
Tree (Dasu et al. 2006), LDD-DSDA (Liu et al. 2017), and WATCH (Faber et al.
2021), or indirectly with a score that correlates with change severity, as done
by D3 (Gözüaçık et al. 2019). Following this reasoning, an approach that satis-
fies R3 should compute a score that depends on the change severity (Gözüaçık
et al. 2019; Dasu et al. 2006; de Souza et al. 2020; Qahtan et al. 2015; Faber
et al. 2021), i.e., the higher the score, the higher the severity. Finally, hypothesis-
testing-based approaches, such as ADWIN (Bifet and Gavaldà 2007), SeqDrift2
(Pears et al. 2014), AdwinK (Faithfull et al. 2019), or IKS (dos Reis et al. 2016),
do not quantify change severity: a slight change observed over a longer time can
lead to the same p-value as a severe change observed over a shorter time, hence p
is not informative about change severity.

1 3

Adaptive Bernstein change detector for high-dimensional…

2.7 Pattern based change detection

A related line of research, pattern-based change detection, deals with identifying
changes in temporal graphs (Loglisci et al. 2018; Impedovo et al. 2019, 2020a, b).
In particular, Loglisci et al. (2018) detect changes in the graph, identify the affected
subgraphs, and quantify the amount of change for these subgraphs. This is similar
to our methodology. However, these methods work well with graph data, but we are
dealing with vector data. To apply these methods in our context, one would need to
create a graph, e.g., by representing each dimension as a node and indicating pair-
wise correlations with edges. However, constructing such a graph becomes impracti-
cal for high-dimensional observations because of the exponentially growing number
of subspaces.

2.8 Competitors

In our experiments, we compare to AdwinK, IKS, D3, IBDD, and WATCH. IBDD,
WATCH, and D3 are recent change detectors for multivariate and high-dimensional
data that fulfill R3. AdwinK extends the ADWIN algorithm to the multivariate case
and fulfills R2. Finally, IKS is the only approach employing a non-parametric two-
sample test for change detection while also satisfying R2.

3 Preliminaries

We are interested in finding changes in the last t observations S = (x1, x2,… , xt)
from a stream of data. Each xi is a d-dimensional vector independently drawn from
a (unknown) distribution Fi . We assume without loss of generality that each vector
coordinate is bounded in [0, 1], i.e., xi ∈ [0, 1]d.

Definition 1 (Change) A change occurs at time point t∗ if the data-generating distri-
bution changes after t∗ : Ft∗ ≠ Ft∗+1.

In high-dimensional data, changes typically affect only a subset of dimensions,
which we call the change subspace. Let D = {1, 2,… , d} be the set of dimensions
and FD′

i
 be the joint distribution of Fi observed in the subspace D′ ⊆ D at time step i.

We define the change subspace as follows:

Definition 2 (Change subspace) The change subspace D∗ at time t∗ is the union of
all D′ ⊆ D in which the joint distribution FD′ changed and which does not contain a
subspace D′′ for which FD��

t∗
≠ FD��

t∗+1
.

If the dimensions in D∗ are uncorrelated, then changes will be visible on the mar-
ginal distributions, i.e., all D′ are of size 1. However, changes may only be detect-
able w.r.t the joint distribution of D∗ or the union of its subspaces of size greater

 M. Heyden et al.

1 3

than 1, which our definition accommodates. Note that the definition can also han-
dle multiple co-occurring changes and considers them as one single change. Last,
change severity measures the difference between FD∗

t∗
 and FD∗

t∗+1
:

Definition 3 (Change severity) The severity of a change is a positive function Δ of
the mismatch between FD∗

t∗
 and FD∗

t∗+1
.

Since we do not know the true distributions Ft∗ and Ft∗+1 , the best we can do is
detecting changes and their characteristics based on the observed data.

4 Approach

4.1 Principle of ABCD

Direct comparison of high-dimensional distributions is impractical as it requires
many samples (Gretton et al. 2012). Yet the number of variables required to describe
such data with high accuracy is often much smaller than d (Lee and Verleysen
2007). Dimensionality reduction techniques let us encode observations in fewer
dimensions. The more information encodings retain, the better one can reconstruct
(decode) the original data. However, if the distribution changes, the reconstruction
will degrade and produce higher errors.

We leverage this principle in ABCD by monitoring the reconstruction loss of
an encoder-decoder model �◦� for some encoder function � and decoder func-
tion � . Figure 1 illustrates this. Specifically, we first learn � ∶ [0, 1]d → [0, 1]d

�
with d� = ⌊𝜂d⌋ < d , � ∈ (1∕d, 1) , mapping the data to fewer dimensions, and
� ∶ [0, 1]d

�

→ [0, 1]d . Then, we monitor the loss between each xt and its reconstruc-
tion x̂t = 𝜓◦𝜙(xt) = 𝜓(𝜙(xt)):

We hypothesize that distribution changes lead to outdated encoder-decoder mod-
els—see for example (Jaworski et al. 2020) for empirical evidence. Hence, we
assume that changes in the reconstruction affect the mean �t∗+1 of the loss, because
the model can no longer accurately reconstruct the input:

(1)Lt = MSE(xt, x̂t) =
1

d

d∑
j=1

(
xt,j − x̂t,j

)2
=

1

d

d∑
j=1

Lt,j

Fig. 1 Overview of ABCD

1 3

Adaptive Bernstein change detector for high-dimensional…

We can now replace the definition of change in high-dimensional data with an eas-
ier-to-evaluate, univariate proxy:

It allows detecting arbitrary changes in the original (high-dimensional) distribution
as long as they affect the average reconstruction loss of the encoder-decoder. Since
the true �t∗ and �t∗+1 are unknown, we estimate them from the stream:

4.2 Detecting the change point

ABCD detects a change at t∗ if �̂�1,t∗ differs significantly from �̂�t∗+1,t . To quantify
this, we derive a test based on Bernstein’s inequality (Bernstein 1924). It is often
tighter than more general alternatives like Hoeffding’s inequality (Boucheron
et al. 2013). Let �̂�1, �̂�2 be the averages of two independent samples from two uni-
variate random variables. One wants to evaluate if both random variables have
the same expected values: The null hypothesis H0 is �1 = �2 . Based on the two
samples, one rejects H0 if Pr

(|�̂�1 − �̂�2| ≥ 𝜖
)
≤ 𝛿 where � is a preset significance

level. The following theorem allows evaluating Eq. (3) based on Bernstein’s
inequality.

Theorem 1 (Bound on Pr
(|�̂�1 − �̂�2| ≥ 𝜖

)
) Given two independent samples X1,X2 of

size n1 and n2 from two random variables with unknown expected values �1,�2 and
variances �2

1
, �2

2
 . Let �̂�1, �̂�2 denote the sample means and let |𝜇1 − xi| < M for all

xi ∈ X1 and |𝜇2 − xi| < M for all xi ∈ X2 respectively. Assuming �1 = �2 , we have:

Proof We follow the same steps as in Bifet and Gavaldà (2007) and Pears et al.
(2014).

Recall Bernstein’s inequality: Let x1,… , xn be independent random variables
with sample mean �̂� = 1∕n

∑
xi and expected value � s.th. ∀xi ∶ |xi − �| ≤ M .

Then, for all 𝜖 > 0,

(2)Ft∗ ≠ Ft∗+1 ⟹ �t∗ ≠ �t∗+1

(3)∃t∗ ∈ [1,… , t] ∶ �t∗ ≠ �t∗+1

(4)�̂�1,t∗ =
1

t∗

t∗∑
i=1

Li, �̂�t∗+1,t =
1

t − t∗

t∑
i=t∗+1

Li.

(5)

Pr
���̂�1 − �̂�2� ≥ 𝜖

�
≤

2 exp

⎧⎪⎨⎪⎩
−

n1(𝜅𝜖)
2

2
�
𝜎2
1
+

1

3
𝜅M𝜖

�
⎫⎪⎬⎪⎭
+ 2 exp

⎧⎪⎨⎪⎩
−

n2((1 − 𝜅)𝜖)2

2
�
𝜎2
2
+

1

3
(1 − 𝜅)M𝜖

�
⎫⎪⎬⎪⎭
∈ (0, 4]

∀𝜅 ∈ [0, 1].

 M. Heyden et al.

1 3

We apply the union bound to Pr
(|�̂�1 − �̂�2| ≥ 𝜖

)
 . For all � ∈ [0, 1] , we have:

Substituting above with Bernstein’s inequality completes the proof. ◻

With regard to change detection, one can use Eq. (5) to evaluate for a time point
k if a change occurred. The question is, however, how to choose � to limit the prob-
ability of false alarm at any time t to a maximum �.

Our approach is to set � to the observed |�̂�1,k − �̂�k+1,t| and to set n1 = k , n2 = t − k .
The result bounds the probability of observing |�̂�1,k − �̂�k+1,t| between two independ-
ent samples of sizes k and t − k under H0 . If this probability is very low, the distribu-
tions must have changed at k. Then, we search for changes at multiple time points
k in the current window. Hence, we obtain multiple such probability estimates; our
change score is their minimum:

The corresponding change point t∗ splits (L1, L2,… , Lt) into the two subwindows
with the statistically most different mean.

4.2.1 Choice of parameter �

The bound in Eq. (5) holds for any � ∈ [0, 1] . A good choice, however, pro-
vides a tighter estimate, resulting in faster change detection for a given rate
of allowed false alarms � . Bifet and Gavaldà (2007) suggest to choose � s.th.
Pr(|�̂�1 − 𝜇1| ≥ 𝜅𝜖) ≈ Pr(|�̂�2 − 𝜇2| ≥ (1 − 𝜅)𝜖) , that approximately minimizes the
upper bound. Substituting both sides with Bernstein’s inequality, we get

Setting n1 = rn2 and simplifying, we have

To solve for � , note that |�̂�1,k − �̂�k+1,t| ≈ 0 for large enough k and t − k while there is
no change. This leads to a change score p ≫ 𝛿 for any choice of � . Hence, choosing
� optimal is irrelevant while there is no change.

(6)Pr (��̂� − 𝜇� ≥ 𝜖) ≤ 2 exp

⎧
⎪⎨⎪⎩
−

n𝜖2

2
�
𝜎2 +

1

3
M𝜖

�
⎫⎪⎬⎪⎭
.

(7)Pr
(|�̂�1 − �̂�2| ≥ 𝜖

)
≤ Pr

(|�̂�1 − 𝜇1| ≥ 𝜅𝜖
)
+ Pr

(|�̂�2 − 𝜇2| ≥ (1 − 𝜅)𝜖
)

(8)p = min
k

Pr
(|�̂�1 − �̂�2| ≥ |�̂�1,k − �̂�k+1,t|

)

(9)
n1(��)

2

�2
1
+

�M�

3

=
n2(1 − �)2�2

�2
2
+

(1−�)M�

3

.

(10)
3�2

1
+ �M�

r�2
=

3�2
2
+ (1 − �)M�

(1 − �)2
.

1 3

Adaptive Bernstein change detector for high-dimensional…

In contrast, if a change occurs, the change in the model’s loss dominates the var-
iance in both subwindows, leading to M𝜖 ≫ 𝜎2

1
, 𝜎2

2
 . In that case, the influence of

�2
1
, �2

2
 is negligible for sufficiently large � and 1 − �:

Solving Eq. (11) for � results in our recommendation for � (Eq. (12) which we
restrict to [�min, 1 − �min] with �min = 0.05.

4.2.2 Minimum sample sizes and outlier sensitivity

This section investigates the conditions under which ABCD detects changes.
We derive a minimum size of the first window above which ABCD detects a

change. It bases on the fact that the number of observations before an evaluated time
point k remains fixed while the number of observations after k grows with t. Those
counts are n1 = k and n2 = t − k in Eq. (5). Also, since we consider bounded ran-
dom variables, their variance is bounded as well. Hence, the second term in Eq. (5)
approaches 0 for any 𝜖 > 0 . With this, solving Eq. (5) for n1 yields:

By setting 𝜖 = |�̂�1 − �̂�2| we see that the required size of the first window decreases
the larger the change in the average reconstruction error. For example, with M = 1 ,
� = �1 = 0.1 , and � = 0.05 our approach requires n1 ≥ 32.

Since ABCD detects changes in the average reconstruction loss of a bounded vec-
tor, it is stable with respect to outliers as long as they are reasonably rare. To see
this, assume w.l.o.g. that window 1 contains nout outliers and that 𝜖 > 0 . One can
show that the average of the outliers, �̂�out , must exceed the average of the remain-
ing inliers, �̂�in , by n1�∕nout . In the example above, a single outlier would thus have
to exceed �̂�in by n1� = 3.2 . This, however, is impossible because M = 1 bounds the
reconstruction loss.

4.3 Detecting the change subspace

After detecting a change, we identify the change subspace. Restricting the encoding
size to d′ < d forces the model to learn relationships between different input dimen-
sions. As a result, the loss observed for dimension j contains not only information
about the change in that dimension (i.e., the marginal distribution in j changes), but
also about correlations influencing dimension j. Hence, we can detect changes in
the marginal- and joint-distributions by evaluating in which dimensions the loss
changed the most.

(11)
�M�

r�2
=

(1 − �)M�

(1 − �)2
.

(12)� =
1

1 + r
=

n2

n1 + n2

(13)n1 ≥

⌈
2 log

(
2

�

)(
�2
1

(��)2
+

M

3��

)⌉
.

 M. Heyden et al.

1 3

Algorithm 1 describes how we identify change subspaces. For each dimension
j, we compute the average reconstruction loss (the squared error in dimension j)
before and after t∗ , denoted �̂j

1,t∗ , �̂
j
t∗+1,t (lines 5 and 6), and the standard deviation

�j1,t∗ , �
j
t∗+1,t (lines 6 and 7). We then evaluate Eq. (5), returning an upper

bound on the p-value in the range (0, 4] for dimension j (line 9). If
pj < 𝜏 ∈ [0, 4] , an external parameter for which we give a recommendation later
on, we add j to the change subspace (lines 10 and 11).

Algorithm 1 Identification of change subspaces.

4.4 Quantifying change severity

ABCD provides a measure of change severity in the affected subspace, based
on the assumption that the loss in the change subspace increases with severity.
Hence, we compute the average reconstruction loss observed in D∗ before and
after the change,

and the standard deviation observed before the change:

We then standard-normalize the average reconstruction loss �̂�D∗

t∗+1
 observed after the

change:

(14)�̂�D∗

1,t∗
=

1

|D∗|t∗
t∗∑
i=1

∑
j∈D∗

Li,j, �̂�D∗

t∗+1,t
=

1

|D∗|(t − t∗)

t∑
i=t∗+1

∑
j∈D∗

Li,j

(15)𝜎D∗

1,t∗
=

√√√√ 1

t∗

t∗∑
i=1

(
�̂�D∗

i
− �̂�D∗

1,t∗

)2

with �̂�D∗

i
=

1

|D∗|
∑
j∈D∗

Li,j

1 3

Adaptive Bernstein change detector for high-dimensional…

Intuitively, Δ is the standard deviation of model’s loss on the new distribution.

4.5 Working with windows

In comparison to most approaches, ABCD evaluates multiple possible change points
within an adaptive time interval [1,… , t] . This frees the user from choosing the win-
dow size a-priori and allows to detect changes at variable time scales. Next, we dis-
cuss how to efficiently evaluate those time points.

4.5.1 Maintaining loss statistics online

To avoid recomputing average reconstruction loss values and their variance for mul-
tiple time points every time new observations arrive, we store Welford aggregates
A1,k summarizing the stream in the interval [1,… , k] . Each aggregate A1,k is a tuple
containing the average reconstruction loss �̂�1,k and the sum of squared differences
ssd1,k = k−1

∑k

j=1
Lj . We store these aggregates for the time interval [1,… , t].

Creating a new aggregate Every time a new observation with loss Lt arrives, we
create a new aggregate based on the previous aggregate A1,t−1 = (�̂�1,t−1, ssd1,t−1) in
O(1) using Welford’s algorithm (Knuth 1997):

Computing the statistics Two aggregates A1,k and A1,t , t > k overlap in
the time interval [1,… , k] . We leverage this overlap to derive an aggregate
Ak+1,t = (�̂�k+1,t, ssdk+1,t) representing the time interval [k + 1,… , t] . Equations (19)
and (20) are based on Chan’s method for combining variance estimates of non-over-
lapping samples (Chan et al. 1982).

From ssd1,k and ssdk+1,t we can compute the sample variances as follows:

(16)Δ =

|||�̂�D∗

t∗+1,t
− �̂�D∗

1,t∗
|||

𝜎D∗

1,t∗

∈ ℝ
+

(17)�̂�1,t =�̂�1,t−1 +
1

t
(Lt − �̂�1,t−1)

(18)ssd1,t =ssd1,t−1 +
(
Lt − �̂�1,t−1

)(
Lt − �̂�1,t

)

(19)�̂�k+1,t =
1

t − k
(t�̂�1,t − k�̂�1,k)

(20)ssdk+1,t =ssd1,t − ssd1,k −
k(t − k)

t

(
�̂�1,k − �̂�k+1,t

)2

(21)�2
1,k

=
ssd1,k

k − 1
, �2

k+1,t
=

ssdk+1,t

t − k − 1

 M. Heyden et al.

1 3

Derivation Given two non-overlapping samples A = {x1,… , xm} and
B = {x1,… , xn} of a real random variable. Let TA =

∑m

i=1
xi and TB =

∑n

i=1
xi be the

sums of the samples and ssdA =
∑m

i=1
(xi − m−1TA)

2 and ssdB =
∑n

i=1
(xi − n−1TB)

2 be
the sums of squared distances from the mean.

For the union of both sets AB = A ∪ B we have TAB = TA + TB , which is equiva-
lent to (m + n)�̂�AB = m�̂�A + n�̂�B . Solving for �̂�B gives

Substituting n = t − k , m = k , 𝜇A = �̂�1,k , 𝜇B = �̂�k+1,t , and �̂�1,t = �̂�AB gives Eq. (19);
next we derive Eq. (20). Chan et al. (1982) state:

which is equivalent to

Solving for ssdB , applying the former substitutions, and setting ssdA = ssd1,k ,
ssdB = ssdk+1,t , and ssd1,t = ssdAB results in Eq. (20).

4.6 Implementation

Algorithm
One can implement ABCD as a recursive algorithm, see Algorithm 2, which

restarts every time a change occurs. We keep a data structure W that contains the
aggregates, instances, and reconstructions. W can either be empty, or, in the case of
a recursive execution, already contain data from the previous run.

Prior to execution, our algorithm must first obtain a model of the current data
from an initial sample of size nmin . If necessary, ABCD allows enough instances
to arrive (lines 5–7). Larger choices of nmin allow for better approximations of the
current distribution but delay change detection. Hence our recommendation is to set
nmin as small as possible to still learn the current distribution; a default of nmin = 100
has worked well for us.

Afterwards, the algorithm trains the model using the instances in W (lines 8–9).
ABCD can in principle work with various encoder-decoder models; thus we deal
with tuning the model only on a high level. Nonetheless, we give recommendations
in our sensitivity study later on.

After model training, ABCD detects changes. It reconstructs each new
observation xt+1 (line 11), creates a new aggregate A1,t+1 (line 12), and adds
wt+1 ∶= (A1,t+1, x̂t+1, xt+1) to W (lines 13–14). Our approach then computes change
score p and change point t∗ (lines 15–16). If p < 𝛿 , it detects a change.

(22)𝜇B =
m + n

n
�̂�AB −

m

n
𝜇A.

(23)ssdAB = ssdA + ssdB +
m

n(m + n)

(
n

m
TA − TB

)2

,

(24)
ssdAB = ssdA + ssdB +

m

n(m + n)

(
n
(
1

m
TA −

1

n
TB

)

�����������������
=𝜇A−𝜇B

)2

.

1 3

Adaptive Bernstein change detector for high-dimensional…

Once ABCD detects a change, it identifies the corresponding subspace and evalu-
ates its severity (lines 21–22). Then it adapts W by dropping the outdated part of the
window (line 23), including all information obtained with the outdated model. At
last, we restart ABCD with the adapted window (line 24).

Algorithm 2 Adaptive Bernstein Change Detector (ABCD)

Discussion
In the worst case our approach consumes linear time and memory because W

grows linearly with t. However, we can simply restrict the size of W to nmax items
for constant memory or evaluate only kmax window splits for constant runtime. In
the latter case we split W at every t∕kmax th time point. Regarding nmax , it is benefi-
cial that the remaining aggregates still contain information about all observations in
(1,… , t) . Hence, ABCD considers the entire past since the last change even though
one restricts the size of W.

ABCD can work with any encoder-decoder model, such as deep neural networks.
However, handling a high influx of new observations faster than the model’s pro-
cessing capability can be challenging. Assuming that �◦� ∈ O(g(d)) for some func-
tion g of dimensionality d, the processing time of a single instance during serial
execution is in O

(
g(d) + kmax

)
 . Nevertheless, both the deep architecture components

and the computation of the change score (cf. Eq. 8) can be executed in parallel using
specialized hardware.

 M. Heyden et al.

1 3

Dimensionality reduction techniques are often already present in data stream
mining pipelines, for example as a preprocessing step to improve the accuracy of
a classifier (Yan et al. 2006). Reusing an existing dimensionality reduction model
makes it is easy to integrate ABCD into an existing pipeline.

Bernstein’s inequality holds for zero-centered bounded random variables that take
absolute values of at maximum M almost surely. While M = 1 serves as a theoretical
upper limit of the zero-centered reconstruction error Lt − �[Lt] for xt ∈ [0, 1]d , we
observe that this theoretical limit is very conservative in practice (cf. “Reconstruc-
tion loss over time” section in “Appendix”). In fact, observing an error of 1 corre-
sponds to an instance and reconstruction of x = [0]d and x̂ = [1]d . This leads us to
use M = 0.1 in our experiments.

5 Experiments

This section describes our experiments and results. We first describe the experi-
mental setting (Sect. 5.1). Then we analyze ABCD’s change detection perfor-
mance (Sect. 5.3), its ability to find change subspaces and quantify change severity
(Sect. 5.4), and its parameter sensitivity (Sect. 5.5).

5.1 Algorithms

We evaluate ABCD with different encoder-decoder models: (1) Principal Compo-
nent Analysis (PCA) (d� = �d), (2) Kernel-PCA (d� = �d , RBF-kernel), and (3) a
standard fully-connected autoencoder model with one hidden ReLU layer (d� = �d)
and an output layer with sigmoid activation. For (1) and (2), we rely on the default
scikit-learn implementations. We implement the autoencoder (3) in pytorch and
train it through gradient descent using E epochs and an Adam optimizer with default
parameters according to Kingma and Ba (2015); see “Training of autoencoder” sec-
tion in “Appendix” for pseudocode of the autoencoder training procedure.

We compare ABCD with AdwinK, IKS, IBDD, WATCH, and D3 (c.f. Section 2).
We evaluate for each approach a large grid of parameters, shown in Table 2. When-
ever possible, the evaluated grids of hyperparameters for competitors base on rec-
ommendations in respective papers. Otherwise, we choose them based on prelimi-
nary experiments. For ABCD, we evaluate larger and smaller values for � , � and E
to observe our approach’s sensitivity to those parameters. The choice of � = 2.5 is
our recommended default based on our sensitivity study in Sect. 5.5. Last, we set
nmin = 100 and kmax = 20 , minimum values that have worked well in preliminary
experiments.

1 3

Adaptive Bernstein change detector for high-dimensional…

5.2 Datasets

There are not many public benchmark data streams for change detection. Thus we
generate our own from seven real-world (rw) and synthetic (syn) classification data-
sets, similar to Faber et al. (2021) and Faithfull et al. (2019). We simulate chang-
ing data streams2 by sorting the data by label, unless stated otherwise. If the label
changes, a change has occurred. In real-world data streams, the number of obser-
vations between changes depends on each dataset, reported below. In the synthetic
streams, we introduce changes every 2000 observations, which is a relatively large
interval, to assess whether some approaches generate many false alarms. The gen-
erators base on the following datasets:

• HAR (rw) The dataset Human Activity Recognition with Smartphones (Anguita
et al. 2013) (d = 561) bases on smartphone accelerometer and gyroscope read-

Table 2 Evaluated approaches
and their parameters

*Used or recommended in the respective papers
†Only relevant for autoencoders
‡Authors did not recommend parameters for their approach

Algorithm Parameter Values

ABCD model PCA, Kernel PCA, Autoencoders
� 0.05
� 0, 3, 0.5, 0.7
E
† 20, 50, 100

n
min

;k
max

;� 100; 20; 2.5
AdwinK k 0.01∗, 0.05∗, 0.1∗, 0.2∗, 0.3∗, 0.4∗, 0.5∗

� 0.05
D3 � 100∗, 250∗, 500∗

� 0.1∗, 0.2∗, 0.3∗, 0.4∗, 0.5∗

� 0.6∗, 0.7∗, 0.8∗, 0.9∗

model Logistic Regression*, Decision Tree
tree depth 1, 3, 5

IBDD � 100, 200, 300
m 10, 20, 50, 100

IKS W 100∗, 200, 500∗

� 0.05
WATCH

‡ � 500, 1000
� 100
� 2, 3
� 1000, 2000

2 Available at https:// github. com/ heyma rco/ Adapt iveBe rnste inCha ngeDe tector.

https://github.com/heymarco/AdaptiveBernsteinChangeDetector

 M. Heyden et al.

1 3

ings for different actions a person performs. A change occurs on average every
1768 observations.

• GAS (rw) This data set (Vergara et al. 2011) (d = 128) contains data from 16
sensors exposed to 6 gases at various concentrations. A change occurs on aver-
age every 2265 observations.

• LED (syn) The LED generator samples instances representing a digit on a seven
segment display. It contains 17 additional random dimensions. We add changes
by varying the probability of bit-flipping in the relevant dimensions.

• RBF (syn) The RBF generator (Bifet et al. 2010) starts by drawing a fixed num-
ber of centroids. For each new instance, the generator chooses a centroid at ran-
dom and adds Gaussian noise. To create changes, we increment the seed of the
generator resulting in different centroids. We then use samples from the new
generator in a subspace of random size.

• MNIST, FMNIST, and CIFAR (syn) Those data generators sample from
the image recognition datasets MNIST (LeCun et al. 1998), Fashion MNIST
(FMNIST) (Xiao et al. 2017) (d = 784) , and CIFAR (Krizhevsky et al. 2009)
(d = 1024 , grayscale).

Changes can occur rapidly (“abrupt” or “sudden”) or in time intervals (“gradual”
or “incremental”). The shorter the interval, the more sudden the change. We vary
the interval size between 1 and 300 unless stated otherwise. Real-world and image
data do not have a ground truth for change subspaces and severity. Thus we generate
three additional data streams:

• HSphere (syn) This generator draws from a d∗-dimensional hypersphere bound
to [0, 1] and adds d − d∗ random dimensions. We vary the radius and center
of the hypersphere to introduce changes. The change subspace contains those
dimensions that define the hypersphere.

• Normal-M/V (syn) These generators sample from a d∗-dimensional normal dis-
tribution and add d − d∗ random dimensions. For type M, changes affect the dis-
tribution’s mean, for V we change the distribution’s variance.

5.3 Change point detection

We use precision, recall, and F1-score to evaluate the performance of the approaches
at detecting changes. We define true positives (TP), false positives (FP) and false
negatives (FN) as follows:

• TP A change was detected before the next change.
• FN A change was not detected before the next change.
• FP A change was detected although no change occurred.

Also, we report the mean time until detection (MTD) indicating the average number
of instances until a change is detected.

1 3

Adaptive Bernstein change detector for high-dimensional…

Figure 2 shows F1-score, precision, recall, and MTD for all datasets and algo-
rithm, as well as a column “Average” that summarizes across datasets. Each box
contains the results for the grid of hyperparameters shown in Table 2. We see that
our approach outperforms its competitors w.r.t. F1-score and precision. It also is
competitive in terms of recall, though it loses against IKS, IBDD, and WATCH.
These approaches seem overly sensitive. The results also indicate that ABCD works
well for a wide range of hyperparameters. One reason is that ABCD uses adaptive
windows, thereby eliminating the effect of a window size parameter (demonstrated
in Sect. 5.6). Another reason is that ABCD detects changes in reconstruction loss
irrespective of the actual quality of the reconstructions. For instance, Kernel PCA
and PCA produce reconstructions of different accuracy in our experiments. How-
ever, for both models, the average accuracy changes when the stream changes, which

Fig. 2 Change point detection: results for different algorithms and datasets; each box contains the results
for the evaluated grid of parameters

Table 3 Results of approaches
with their best hyperparameter
configuration w.r.t. F1 score
averaged over all data sets

Approach F1 Prec Rec MTD

ABCD (ae) 0.90 0.96 0.87 250
ABCD (kpca) 0.88 0.95 0.84 312
ABCD (pca) 0.73 0.93 0.65 442
AdwinK 0.46 0.48 0.57 400
D3 0.70 0.63 0.82 251
IBDD 0.45 0.30 0.97 396
IKS 0.08 0.04 0.43 24
WATCH 0.69 0.54 1.00 626

 M. Heyden et al.

1 3

is what our algorithm detects. Refer to “Reconstruction loss over time” section
“Appendix” for an illustration of the models’ reconstruction loss over time. Hence,
our reported results do not yield information about the actual accuracy of the under-
lying encoder-decoder models.

ABCD has a higher MTD than D3, IBDD, and IKS, i.e., it requires more data to
detect changes. However, those competitors are much less conservative and detect
many more changes than exist in the data. Hence they have low precision but high
recall—this leads to a lower MTD.

Table 3 reports the results of all approaches with their best hyperparameters.
WATCH and D3 achieve relatively high F1-score and precision. In fact, those
approaches are our strongest competitors although we still outperform them by at
least 3 %. Further, WATCH has an MTD of 626, which is more than ABCD while
D3 and ABCD have a comparable MTD.

ABCD has much higher precision than its competitors. We assume this is because
ABCD (1) leverages the relationships between dimensions, in comparison to
AdwinK, IKS, or IBDD, and (2) learns those relationships more effectively than,
say, D3 or WATCH. For example, we observed in our experiments that WATCH
was frequently unable to accurately approximate the Wasserstein distance in high-
dimensional data.

ABCD has lower recall than most competitors, partly due to their over-sensitivity.
In this regard, our approach might benefit from application-specific encoder-decoder
models that leverage structure in the data, such as spacial relationships between the
pixels of an image, more effectively.

5.4 Change subspace and severity

We now evaluate change subspace identification and change severity estimation.
We set d = {24, 100, 500} and vary the change subspace size d∗ randomly in [1, d]
(except for LED, here the subspace always contains dimensions 1–7). We set the
ground truth for the severity to the absolute difference between the parameters

Fig. 3 Results for evaluating change subspace and severity

1 3

Adaptive Bernstein change detector for high-dimensional…

that define the concepts, e.g., the hypersphere-radius in HAR before and after the
change. We report an approach’s subspace detection accuracy (SAcc.), where true
positives (true negatives) represent those dimensions that were correctly classified
as being member (not being member) of the change subspace. We use Spearman’s
correlation between the detected severity and the ground truth. We also report the
F1-score for detecting change points.

Figure 3 shows our results. As before, each box summarizes the results for the
grid of evaluated hyperparameters.

Comparing the two approaches, AdwinK and IKS, that monitor each dimension
separately, we see that the former can only detect changes that affect the mean of
the marginal distributions (i.e., on Norm-M, LED). At the same time, the latter can
also detect other changes (e.g., changes in variance). This is expected since AdwinK
compares the mean in two windows while IKS compares the empirical distributions.

Regarding subspace detection, our approach achieves an accuracy of 0.72 for
PCA, 0.78 for autoencoders, and 0.79 for Kernel PCA. AdwinK performs similarly
well when changes affect the mean of the marginal distributions. Except on LED,
IKS performs worse than ABCD and AdwinK, presumbably because IKS issues an
alarm as soon as a single dimension changed.

The estimates of our approach correlate more strongly with the ground truth than
those of competitors, with an average of 0.31 for PCA, 0.36 for Kernel PCA and
0.37 for Autoencoders. However, we expect more specialized models to better than
our tested models. On LED, PCA-based models appear to struggle to separate pat-
terns from noise, resulting in poor noise level estimates and low correlation scores.

5.5 Parameter sensitivity of ABCD

Sensitivity to �
Figure 4a plots F1 for different datasets over � . We observe that the size of the

bottleneck does not significantly impact the change detection performance of
ABCD (ae) and ABCD (kpca). For PCA, however, too large bottlenecks seem to
inhibit change detection on CIFAR, Gas, and MNIST. For those datasets, we assume
that the change occurs along the retained main components, rendering it undetect-
able; see “Detectable and undetectable change for ABCD (pca)” section “Appendix”
for an illustration. Figure 4b shows the subspace detection accuracy and Spearman’s
� . The influence of � on both metrics is low. As mentioned earlier, we assume that
a change in reconstruction loss, rather than the quality of reconstruction itself, is
crucial for ABCD. An exception is the LED dataset, on which PCA and Kernel-PCA
are unable to provide a measure that positively correlates with change severity. We
hypothesize that those methods struggle to separate patterns from noise, resulting in
poor noise level estimates and low correlation scores.

Sensitivity to E
Fig. 4c plots our approach’s performance for different choices of E. Overall, our

approach seems to be robust to the choice of E. On LED, however, larger choices of
E lead to substantial improvements in F1-score. The reason may be that the autoen-
coder does not converge to a proper representation of the data for small E. To avoid

 M. Heyden et al.

1 3

this, we recommend choosing E ≥ 50 and to increase the value if one observes that
the model has not yet converged sufficiently.

Sensitivity to �
Fig. 4d investigates how the choice of � affects the performance of ABCD at

detecting subspaces. Since the change score in Eq. (5) provides an upper bound on
the probability that a change occurred, the function can return values greater than 1,
i.e,. in the range (0, 4]. Hence we vary � in that range and record the obtained sub-
space detection accuracy. For all approaches we achieve optimal accuracy at � ≈ 2.5 .
This is probably because some dimensions could change more severely than others,

Fig. 4 Sensitivity of our approach to its hyperparameters

1 3

Adaptive Bernstein change detector for high-dimensional…

resulting in variations of the change scores observed in the different dimensions of
the change subspace. Based on our findings we recommend � = 2.5 as default.

5.6 Ablation study on window types

Next, we investigate the effect of different window types on change detection per-
formance. We evaluate those commonly found in change detection literature (and in
our competitors) and couple them with encoder-decoder models and the probabil-
ity bound in Eq. (5). In particular, we compare: (1) Adaptive windows (AW), as in
ADWIN, AdwinK, and our approach, (2) fixed reference windows (RW), as in IKS,
(3) sliding windows (SW), as in WATCH, and (4) jumping windows (JW), as in D3.
The latter “jump” every �|W| instances.

We evaluate the hyperparameters mentioned in Table 2. For example, because
D3 uses jumping windows, we include the evaluated hyperparameters for D3 in our
evaluation of jumping windows. In addition, we extend the grid with other reason-
able choices since we already preselected those in Table 2 for our competitors in a
preliminary study. For ABCD we use � = 0.5 and E = 50.

Table 4 reports the average over all hyperparameter combinations. AWs yield
higher F1-score and recall than other techniques, while precision remains high
(≥ 0.95). SWs have a lower MTD than AWs and hence seem to require a fewer
instances until they detect a change. This is expected: in contrast to sliding windows,
adaptive windows allow the detection of even slight changes after a longer period of
time, resulting in both higher MTD and recall.

Table 4 Ablation: using
encoder-decoder models with
different window types

Model Window F1 Prec Rec MTD

AE AW 0.83 0.95 0.78 455.6
RW 0.53 1.00 0.21 403.6
SW 0.62 1.00 0.40 207.2
JW 0.52 0.79 0.46 239.1

KPCA AW 0.83 0.99 0.75 309.0
RW 0.56 1.00 0.23 456.3
SW 0.68 1.00 0.49 202.8
JW 0.50 0.77 0.33 266.2

PCA AW 0.72 0.98 0.55 355.3
RW 0.36 1.00 0.09 400.0
SW 0.53 1.00 0.33 206.7
JW 0.46 0.75 0.20 239.9

 M. Heyden et al.

1 3

Fig. 5 Runtime analysis of ABCD

Fig. 6 Illustration of detectable and undetectable change using PCA

1 3

Adaptive Bernstein change detector for high-dimensional…

5.7 Runtime analysis

5.7.1 Comparison with competitors

Figure 5a shows the mean time per observation (MTPO) of ABCD and its com-
petitors for d ∈ {10, 100, 1000, 10, 000} running single-threaded. The results are
averaged over all evaluated parameters (Table 2). ABCD (id) replaces the encoder-
decoder model with the identity which does not cause overhead. This allows measur-
ing how much the encoder-decoder model influences ABCD’s runtime. The results
confirm that the runtime of ABCD alone, i.e, without the encoding-decoding-pro-
cess, remains unaffected by a stream’s dimensionality.

We observe that our approach is able to process around 10,000 observations per
second for d ≤ 100 . This is more than IKS, WATCH and AdwinK (except at d = 10)
but slower than D3 and IBDD. The reason is that our approach evaluates kmax pos-
sible change points in each time step. In high-dimensional data, our competitors’
MTPO grows faster than ABCD with PCA or KPCA; in fact, ABCD (pca) is sec-
ond fastest after D3 for d ≥ 1000 . An exception is WATCH at d = 10000 . This is
due to an iteration cap for approximating the Wasserstein distance restricting the
approach’s MTPO.

5.7.2 Runtime depending on window size

Next, we investigate ABCD’s runtime for different choices of kmax and � . We run this
experiment on a single CPU thread. For all three evaluated models, the encoding-
decoding of an observation has a time complexity of O(�d2) ; hence, ABCD’s pro-
cessing time of one instance is in O(�d2 + kmax) . We therefore expect a quadratic
increase in execution time with dimensionality and a linear increase with � and kmax
when running on a single core.

The results in Fig. 5b show the influence of kmax on the execution time: kmax effec-
tively restricts the MTPO as soon as |W| = kmax . Afterwards, MTPO remains unaf-
fected by |W| . This also confirms that one can evaluate different possible change
points in constant time using the proposed aggregates.

We show the runtime for different choices of bottleneck-size � in Fig. 5c. � has
little influence on the runtime of ABCD with PCA and Kernel-PCA. However, cou-
pled with an autoencoder (implemented in pytorch) we observe the expected linear
increase in execution time from 0.1 ms for � = 0.3 to 0.3 ms for � = 0.7 . Consider-
ing that change detection performance has shown to remain stable even for smaller
choices of � , we recommend � ≤ 0.5 as default.

6 Conclusion

We presented a change detector for high-dimensional data streams, called ABCD,
that monitors the reconstruction loss of an encoder-decoder-model in an adap-
tive window with a change score based on Bernstein’s inequality. Our approach

 M. Heyden et al.

1 3

identifies changes and change subspaces, and provides a severity measure that corre-
lates with the ground truth. Since encoder-decoder models are already used in many
domains (Rani et al. 2022), our approach is widely applicable. In the future, it would
thus be interesting to test ABCD with application or data specific encoder-decoder
models. For example, one might observe even better performance on streams of
image data when applying convolutional autoencoders. Last, ABCD could also ben-
efit from a theoretical analysis of the relationship between changes in data distribu-
tion and the loss of different encoder-decoder models.

Appendix

Training of autoencoder

Algorithm 3 describes the training of the autoencoder model as done in our experi-
ments. First, we collect the training data from the current window W (line 2). After-
wards we perform gradient descent on Xtrain for E epochs at a learning rate of lr.

Algorithm 3 Autoencoder training

Detectable and undetectable change for ABCD (pca)

This section illustrates under which conditions one can use principal component
analysis to detect change. Figure 6 shows data from two distributions: black points
(e.g., before the change) plus the associated main principle component, and blue
points (e.g., after the change). On the left, the change affects the correlation between
Dim. 1 and Dim. 2. This leads to an increased reconstruction error for the points
highlighted in blue. On the right, the change occurs along the main principle com-
ponent. I.e., the variance along the main principle component has increased. Such
kind of change is undetectable by ABCD (pca) as the reconstruction error remains
unchanged.

1 3

Adaptive Bernstein change detector for high-dimensional…

Reconstruction loss over time

Figure 7 shows the reconstruction loss of the evaluated encoder-decoder mod-
els over the length of the stream. We observe that indeed the reconstruction loss
decreases with increasing bottleneck size (controlled by �), and with increasing
number of training epochs E (first three columns). Further, we see that regard-
less of E, � , or the type of model, the reconstruction loss typically changes after
a change point. After the change was detected, ABCD learns the new concept,
which mostly leads to a decrease in reconstruction loss. Last, we observe that the
theoretical limit of M = 1 for the absolute difference between the reconstruction
loss and its expected value is overly conservative. A value of M = 0.1 seems to be
a more realistic choice.

Fig. 7 Reconstruction loss over the length of the stream

 M. Heyden et al.

1 3

Acknowledgements This work was supported by the German Research Foundation (DFG) Research
Training Group GRK 2153: Energy Status Data—Informatics Methods for its Collection, Analysis and
Exploitation.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Anguita D, Ghio A, Oneto L et al (2013) A public domain dataset for human activity recognition using
smartphones. In: ESANN. https:// www. esann. org/ sites/ defau lt/ files/ proce edings/ legacy/ es2013- 84.
pdf

Bai J, Perron P (2003) Critical values for multiple structural change tests. Econometr J 6(1):72–78.
https:// doi. org/ 10. 1111/ 1368- 423X. 00102

Bernstein SN (1924) On a modification of Chebyshev’s inequality and of the error formula of Laplace.
Ann Sci Inst Sav Ukraine Sect Math

Bifet A, Gavaldà R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings
of the seventh SIAM international conference on data mining. SIAM, pp 443–448. https:// doi. org/
10. 1137/1. 97816 11972 771. 42

Bifet A, Holmes G, Pfahringer B (2010) Leveraging bagging for evolving data streams. In: ECML
PKDD, lecture notes in computer science, vol 6321. Springer, pp 135–150. https:// doi. org/ 10. 1007/
978-3- 642- 15880-3_ 15

Boucheron S, Lugosi G, Massart P (2013) Concentration inequalities: a nonasymptotic theory of inde-
pendence. Oxford University Pressm. https:// doi. org/ 10. 1093/ acprof: oso/ 97801 99535 255. 001. 0001

Ceci M, Corizzo R, Japkowicz N et al (2020) ECHAD: embedding-based change detection from mul-
tivariate time series in smart grids. IEEE Access 8:156,053-156,066. https:// doi. org/ 10. 1109/
ACCESS. 2020. 30190 95

Chakar S, Lebarbier E, Lévy-Leduc C et al (2017) A robust approach for estimating change-points in the
mean of an AR(1) process. Bernoulli 23(2):1408–1447. https:// doi. org/ 10. 3150/ 15- BEJ782

Chan TF, Golub GH, LeVeque RJ (1982) Updating formulae and a pairwise algorithm for computing
sample variances. Technical report, Heidelberg

Chaudhuri A, Fellouris G, Tajer A (2021) Sequential change detection of a correlation structure under a
sampling constraint. In: ISIT, pp 605–610. https:// doi. org/ 10. 1109/ ISIT4 5174. 2021. 95177 36

Dasu T, Krishnan S, Venkatasubramanian S et al (2006) An information-theoretic approach to detecting
changes in multi-dimensional data streams. In: Proceedings of the symposium on the interface of
statistics, computing science, and applications (interface)

de Jong KL, Bosman AS (2019) Unsupervised change detection in satellite images using convolutional
neural networks. In: IJCNN 2019. IEEE, pp 1–8. https:// doi. org/ 10. 1109/ IJCNN. 2019. 88517 62

de Souza VMA, Chowdhury FA, Mueen A (2020) Unsupervised drift detection on high-speed data
streams. In: BigData. IEEE, pp 102–111. https:// doi. org/ 10. 1109/ BigDa ta500 22. 2020. 93778 80

dos Reis DM, Flach PA, Matwin S et al (2016) Fast unsupervised online drift detection using incremen-
tal Kolmogorov-Smirnov test. In: SIGKDD. ACM, pp 1545–1554. https:// doi. org/ 10. 1145/ 29396 72.
29398 36

Faber K, Corizzo R, Sniezynski B et al (2021) WATCH: Wasserstein change point detection for high-
dimensional time series data. In: Big data. IEEE, pp 4450–4459. https:// doi. org/ 10. 1109/ BigDa
ta525 89. 2021. 96719 62

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.esann.org/sites/default/files/proceedings/legacy/es2013-84.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2013-84.pdf
https://doi.org/10.1111/1368-423X.00102
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1007/978-3-642-15880-3_15
https://doi.org/10.1007/978-3-642-15880-3_15
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1109/ACCESS.2020.3019095
https://doi.org/10.1109/ACCESS.2020.3019095
https://doi.org/10.3150/15-BEJ782
https://doi.org/10.1109/ISIT45174.2021.9517736
https://doi.org/10.1109/IJCNN.2019.8851762
https://doi.org/10.1109/BigData50022.2020.9377880
https://doi.org/10.1145/2939672.2939836
https://doi.org/10.1145/2939672.2939836
https://doi.org/10.1109/BigData52589.2021.9671962
https://doi.org/10.1109/BigData52589.2021.9671962

1 3

Adaptive Bernstein change detector for high-dimensional…

Faithfull WJ, Diez JJR, Kuncheva LI (2019) Combining univariate approaches for ensemble change
detection in multivariate data. Inf Fusion 45:202–214. https:// doi. org/ 10. 1016/j. inffus. 2018. 02. 003

Fouché E, Komiyama J, Böhm K (2019) Scaling multi-armed bandit algorithms. In: SIGKDD. ACM, pp
1449–1459. https:// doi. org/ 10. 1145/ 32925 00. 33308 62

Garreau D, Arlot S (2018) Consistent change-point detection with kernels. Electron J Stat
12(2):4440–4486

Goldenberg I, Webb GI (2019) Survey of distance measures for quantifying concept drift and shift in
numeric data. Knowl Inf Syst 60(2):591–615. https:// doi. org/ 10. 1007/ s10115- 018- 1257-z

Gözüaçık O, Büyükçakır A, Bonab H et al (2019) Unsupervised concept drift detection with a discrimi-
native classifier. In: CIKM. ACM, pp 2365–2368. https:// doi. org/ 10. 1145/ 33573 84. 33581 44

Gretton A, Borgwardt KM, Rasch MJ et al (2012) A kernel two-sample test. J Mach Learn Res 13:723–
773. https:// doi. org/ 10. 5555/ 25033 08. 21884 10

Harchaoui Z, Cappe O (2007) Retrospective multiple change-point estimation with kernels. In: IEEE/
SP 14th workshop on statistical signal processing, pp 768–772. https:// doi. org/ 10. 1109/ SSP. 2007.
43013 63

Impedovo A, Loglisci C, Ceci M et al (2020) Condensed representations of changes in dynamic graphs
through emerging subgraph mining. Eng Appl Artif Intell 94(103):830. https:// doi. org/ 10. 1016/j.
engap pai. 2020. 103830

Impedovo A, Ceci M, Calders T (2019) Efficient and accurate non-exhaustive pattern-based change
detection in dynamic networks. Lecture notes in computer science. Springer, vol 11828, pp 396–
411. https:// doi. org/ 10. 1007/ 978-3- 030- 33778-0_ 30

Impedovo A, Mignone P, Loglisci C et al (2020b) Simultaneous process drift detection and characteriza-
tion with pattern-based change detectors. Lecture notes in computer science. Springer, vol 12323,
pp 451–467. https:// doi. org/ 10. 1007/ 978-3- 030- 61527-7_ 30

Iwashita AS, Papa JP (2019) An overview on concept drift learning. IEEE Access 7:1532–1547. https://
doi. org/ 10. 1109/ ACCESS. 2018. 28860 26

Jaworski M, Rutkowski L, Angelov P (2020) Concept drift detection using autoencoders in data streams
processing. In: ICAISC. Springer, pp 124–133. https:// doi. org/ 10. 1007/ 978-3- 030- 61401-0_ 12

Jiao Y, Chen Y, Gu Y (2018) Subspace change-point detection: a new model and solution. IEEE J Sel
Top Signal Process 12(6):1224–1239. https:// doi. org/ 10. 1109/ JSTSP. 2018. 28731 47

Khamassi I, Sayed Mouchaweh M, Hammami M et al (2015) Self-adaptive windowing approach
for handling complex concept drift. Cogn Comput 7(6):772–790. https:// doi. org/ 10. 1007/
s12559- 015- 9341-0

Killick R, Fearnhead P, Eckley IA (2012) Optimal detection of changepoints with a linear computational
cost. J Am Stat Assoc 107(500):1590–1598. https:// doi. org/ 10. 1080/ 01621 459. 2012. 737745

Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: ICLR. arXiv: 1412. 6980
Knuth DE (1997) The art of computer programming: seminumerical algorithms, vol 2. Addison-Wesley
Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images. Technical

report
Lajugie R, Bach FR, Arlot S (2014) Large-margin metric learning for constrained partitioning problems.

In: ICML, JMLR workshop and conference proceedings, vol 32. JMLR.org, pp 297–305. http://
proce edings. mlr. press/ v32/ lajug ie14. html

LeCun Y, Cortes C, Burges C (1998) The MNIST database of handwritten digits. http:// yann. lecun. com/
exdb/ mnist/

Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction. Springer. https:// doi. org/ 10. 1007/
978-0- 387- 39351-3

Liu A, Song Y, Zhang G et al (2017) Regional concept drift detection and density synchronized drift
adaptation. In: IJCAI. ijcai.org, pp 2280–2286. https:// doi. org/ 10. 24963/ ijcai. 2017/ 317

Liu P, Wang J, Wang Z et al (2019) High-dimensional data abnormity detection based on improved Vari-
ance-of-Angle (VOA) algorithm for electric vehicles battery. In: 2019 IEEE energy conversion con-
gress and exposition (ECCE), pp 5072–5077. https:// doi. org/ 10. 1109/ ECCE. 2019. 89127 77

Loglisci C, Ceci M, Impedovo A et al (2018) Mining microscopic and macroscopic changes in network
data streams. Knowl Based Syst 161:294–312. https:// doi. org/ 10. 1016/j. knosys. 2018. 07. 011

Lu J, Liu A, Dong F et al (2019) Learning under concept drift: a review. IEEE Trans Knowl Data Eng
31(12):2346–2363. https:// doi. org/ 10. 1109/ TKDE. 2018. 28768 57

Lung-Yut-Fong A, Lévy-Leduc C, Cappé O (2015) Homogeneity and change-point detection tests for
multivariate data using rank statistics. Journal de la Société Française de Statistique 156(4):133–162

https://doi.org/10.1016/j.inffus.2018.02.003
https://doi.org/10.1145/3292500.3330862
https://doi.org/10.1007/s10115-018-1257-z
https://doi.org/10.1145/3357384.3358144
https://doi.org/10.5555/2503308.2188410
https://doi.org/10.1109/SSP.2007.4301363
https://doi.org/10.1109/SSP.2007.4301363
https://doi.org/10.1016/j.engappai.2020.103830
https://doi.org/10.1016/j.engappai.2020.103830
https://doi.org/10.1007/978-3-030-33778-0_30
https://doi.org/10.1007/978-3-030-61527-7_30
https://doi.org/10.1109/ACCESS.2018.2886026
https://doi.org/10.1109/ACCESS.2018.2886026
https://doi.org/10.1007/978-3-030-61401-0_12
https://doi.org/10.1109/JSTSP.2018.2873147
https://doi.org/10.1007/s12559-015-9341-0
https://doi.org/10.1007/s12559-015-9341-0
https://doi.org/10.1080/01621459.2012.737745
http://arxiv.org/abs/1412.6980
http://proceedings.mlr.press/v32/lajugie14.html
http://proceedings.mlr.press/v32/lajugie14.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-0-387-39351-3
https://doi.org/10.1007/978-0-387-39351-3
https://doi.org/10.24963/ijcai.2017/317
https://doi.org/10.1109/ECCE.2019.8912777
https://doi.org/10.1016/j.knosys.2018.07.011
https://doi.org/10.1109/TKDE.2018.2876857

 M. Heyden et al.

1 3

Matteson DS, James NA (2014) A nonparametric approach for multiple change point analysis of mul-
tivariate data. J Am Stat Assoc 109(505):334–345. https:// doi. org/ 10. 1080/ 01621 459. 2013. 849605

Montiel J, Read J, Bifet A et al (2018) Scikit-multiflow: A multi-output streaming framework. JMLR
19(1):2915–2914

Mowbray M, Savage T, Wu C et al (2021) Machine learning for biochemical engineering: a review. Bio-
chem Eng J 172:108,054

Naseer S, Ali RF, Dominic PDD et al (2020) Learning representations of network traffic using deep neu-
ral networks for network anomaly detection: a perspective towards oil and gas IT infrastructures.
Symmetry 12(11):1882. https:// doi. org/ 10. 3390/ sym12 111882

Page ES (1954) Continuous inspection schemes. Biometrika 41(1–2):100–115. https:// doi. org/ 10. 1093/
biomet/ 41.1- 2. 100

Pears R, Sakthithasan S, Koh YS (2014) Detecting concept change in dynamic data streams. Mach Learn
97(3):259–293. https:// doi. org/ 10. 1007/ s10994- 013- 5433-9

Qahtan AA, Alharbi B, Wang S et al (2015) A PCA-based change detection framework for multidimen-
sional data streams: Change detection in multidimensional data streams. In: SIGKDD. ACM, New
York, NY, USA, pp 935–944. https:// doi. org/ 10. 1145/ 27832 58. 27833 59

Rani R, Khurana M, Kumar A et al (2022) Big data dimensionality reduction techniques in IoT: review,
applications and open research challenges. Clust Comput 25(6):4027–4049. https:// doi. org/ 10. 1007/
s10586- 022- 03634-y

Shewhart WA (1930) Economic quality control of manufactured product, vol 9. https:// doi. org/ 10. 1002/j.
1538- 7305. 1930. tb003 73.x

Sun Y, Wang Z, Liu H et al (2016) Online ensemble using adaptive windowing for data streams with
concept drift. Int J Distrib Sens Netw 12(5):4218,973:1-4218,973:9. https:// doi. org/ 10. 1155/ 2016/
42189 73

Suryawanshi S, Goswami A, Patil P et al (2022) Adaptive windowing based recurrent neural network for
drift adaption in non-stationary environment. J Amb Intell Hum Comput 10:10. https:// doi. org/ 10.
1007/ s12652- 022- 04116-0

Truong C, Oudre L, Vayatis N (2020) Selective review of offline change point detection methods. Signal
Process. https:// doi. org/ 10. 1016/j. sigpro. 2019. 107299

Vergara A, Huerta R, Ayhan T et al (2011) Gas sensor drift mitigation using classifier ensembles. In:
Proceedings of the fifth international workshop on knowledge discovery from sensor data. ACM,
SensorKDD ’11, pp 16–24. https:// doi. org/ 10. 1145/ 20036 53. 20036 55

Vrigkas M, Nikou C, Kakadiaris IA (2015) A review of human activity recognition methods. Front Robot
AI 2:28. https:// doi. org/ 10. 3389/ frobt. 2015. 00028

Webb GI, Lee LK, Goethals B et al (2018) Analyzing concept drift and shift from sample data. Data Min
Knowl Discov 32(5):1179–1199. https:// doi. org/ 10. 1007/ s10618- 018- 0554-1

Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: a novel image dataset for benchmarking machine
learning algorithms. CoRR arXiv: 1708. 07747

Xie L, Xie Y, Moustakides GV (2020) Sequential subspace change point detection. Seq Anal 39(3):307–
335. https:// doi. org/ 10. 1080/ 07474 946. 2020. 18231 91

Yan J, Zhang B, Liu N et al (2006) Effective and efficient dimensionality reduction for large-scale and
streaming data preprocessing. IEEE Trans Knowl Data Eng 18(3):320–333. https:// doi. org/ 10. 1109/
TKDE. 2006. 45

Zhao X, Wu J, Shi Y et al (2018) Fault diagnosis of motor in frequency domain signal by stacked de-
noising auto-encoder. Comput Mater Contin 57(2):223–242

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1080/01621459.2013.849605
https://doi.org/10.3390/sym12111882
https://doi.org/10.1093/biomet/41.1-2.100
https://doi.org/10.1093/biomet/41.1-2.100
https://doi.org/10.1007/s10994-013-5433-9
https://doi.org/10.1145/2783258.2783359
https://doi.org/10.1007/s10586-022-03634-y
https://doi.org/10.1007/s10586-022-03634-y
https://doi.org/10.1002/j.1538-7305.1930.tb00373.x
https://doi.org/10.1002/j.1538-7305.1930.tb00373.x
https://doi.org/10.1155/2016/4218973
https://doi.org/10.1155/2016/4218973
https://doi.org/10.1007/s12652-022-04116-0
https://doi.org/10.1007/s12652-022-04116-0
https://doi.org/10.1016/j.sigpro.2019.107299
https://doi.org/10.1145/2003653.2003655
https://doi.org/10.3389/frobt.2015.00028
https://doi.org/10.1007/s10618-018-0554-1
http://arxiv.org/abs/1708.07747
https://doi.org/10.1080/07474946.2020.1823191
https://doi.org/10.1109/TKDE.2006.45
https://doi.org/10.1109/TKDE.2006.45

	Adaptive Bernstein change detector for high-dimensional data streams
	Abstract
	1 Introduction
	2 Related work
	2.1 Change detector types
	2.2 Univariate change detection
	2.3 Multivariate change detection
	2.4 Offline change point detection
	2.5 Change subspace
	2.6 Change severity
	2.7 Pattern based change detection
	2.8 Competitors

	3 Preliminaries
	4 Approach
	4.1 Principle of ABCD
	4.2 Detecting the change point
	4.2.1 Choice of parameter
	4.2.2 Minimum sample sizes and outlier sensitivity

	4.3 Detecting the change subspace
	4.4 Quantifying change severity
	4.5 Working with windows
	4.5.1 Maintaining loss statistics online

	4.6 Implementation

	5 Experiments
	5.1 Algorithms
	5.2 Datasets
	5.3 Change point detection
	5.4 Change subspace and severity
	5.5 Parameter sensitivity of ABCD
	5.6 Ablation study on window types
	5.7 Runtime analysis
	5.7.1 Comparison with competitors
	5.7.2 Runtime depending on window size

	6 Conclusion
	Appendix
	Training of autoencoder
	Detectable and undetectable change for ABCD (pca)
	Reconstruction loss over time

	Acknowledgements
	References

