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Abstract
Change detection is of fundamental importance when analyzing data streams. 
Detecting changes both quickly and accurately enables monitoring and prediction 
systems to react, e.g., by issuing an alarm or by updating a learning algorithm. How-
ever, detecting changes is challenging when observations are high-dimensional. In 
high-dimensional data, change detectors should not only be able to identify when 
changes happen, but also in which subspace they occur. Ideally, one should also 
quantify how severe they are. Our approach, ABCD, has these properties. ABCD 
learns an encoder-decoder model and monitors its accuracy over a window of adap-
tive size. ABCD derives a change score based on Bernstein’s inequality to detect 
deviations in terms of accuracy, which indicate changes. Our experiments dem-
onstrate that ABCD outperforms its best competitor by up to 20% in F1-score on 
average. It can also accurately estimate changes’ subspace, together with a severity 
measure that correlates with the ground truth.
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1 Introduction

Data streams are open-ended, ever-evolving sequences of observations from some 
process. They pose unique challenges for analysis and decision-making. One cru-
cial task is to detect changes, i.e., shifts in the observed data, that may indicate a 
change in the underlying process. Change detection has been an active research area. 
However, the high-dimensional setting, in which observations contain a large num-
ber of simultaneously measured quantities, did not receive enough attention. Yet, it 
may yield useful insights in environmental monitoring (de Jong and Bosman 2019), 
human activity recognition (Vrigkas et al. 2015), network traffic monitoring (Naseer 
et al. 2020), automotive (Liu et al. 2019), predictive maintenance (Zhao et al. 2018), 
and biochemical engineering (Mowbray et al. 2021):
Example (Biofuel production) The production of fuel from biomass is a complex 
process comprising many interdependent process steps. Those include pyrolysis, 
synthesis, distillation, and separation. Many steps rely on (by-)products of other 
steps as reactants, leading to a highly interconnected system with many process 
parameters. A monitoring system tracks the process parameters to detect failures in 
the plant: (i) The system must detect changes in a large (i.e., high-dimensional) vec-
tor of process parameters, which may indicate failures. (ii) The system must find out 
which process parameters are affected by the change to allow for a targeted reaction. 
Since the system is very complex and has many interconnected components, change 
is often evident only when considering correlations between process parameters. An 
example would be the correlation between temperature and concentration fluctua-
tions. So it is insufficient to monitor each process parameter in isolation. (iii) There 
can exist slight changes which only require minor adjustments and more severe ones 
that require immediate intervention to avoid a shutdown of the plant. The monitor-
ing system should provide an estimate of the severity of change.

The example illustrates three requirements for modern change detectors:

• R1: Change point The primary task of change detectors is to identify that the 
data stream has changed and when it occurred.

• R2: Change subspace A change may only concern a subset of dimensions—the 
change subspace. Change detectors for high-dimensional data streams should be 
able to identify such subspaces.

• R3: Change severity Quantifying relative change severity to distinguish between 
changes of different importance is essential to react appropriately.

Prior works already acknowledge the relevance of the above requirements (Lu et al. 
2019; Webb et al. 2018). However, fulfilling R1–R3 in combination remains chal-
lenging since they depend on each other: on the one hand, detecting changes in 
high-dimensional data is difficult because changes typically only affect few dimen-
sions. Unaffected dimensions “dilute” a change (i.e., a change occuring in a sub-
space appears to be less severe in the full space). This might make changes harder 
to detect in all dimensions. On the other hand, detecting the change subspace should 
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occur after detecting a change, since monitoring all possibles subspaces is intracta-
ble. Last, one should restrict computation of change severity to the change subspace 
to eliminate dilution.

Existing methods for change detection, summarized in Table  1, either are uni-
variate (UV), multivariate (MV), or specifically designed for high-dimensional data 
(HD); the latter claim efficiency w.r.t. high-dimensionality or resilience against the 
“curse of dimensionality”. However, they do not fulfill R1–R3 in combination suf-
ficiently well as Sect. 2 describes.

Thus, we propose the Adaptive Bernstein Change Detector (ABCD), which 
addresses R1–R3 in combination. We articulate our contributions as follows:

(i) Problem Definition We formalize the problem of detecting changes in high-
dimensional data streams such that R1-R3 can be tackled in combination. (ii) Adap-
tive Bernstein Change Detector We present ABCD, a change detector for high-
dimensional data, that satisfies R1–R3. It monitors the loss of an encoder-decoder 
model using an adaptive window size and statistical testing. Adaptive windows ena-
ble ABCD to detect severe changes quickly and, over a longer period, identify hard-
to-detect changes that would typically require a large window size. (iii) Bernstein 
change score Our approach applies a statistical test based on Bernstein’s inequality. 
This limits the probability of false alarms. (iv) Online computation We propose an 
efficient method for computing the change score in adaptive windows and discuss 
design choices leading to constant time and memory. (v) Benchmarking We con-
duct experiments on 10 data streams based on real-world and synthetic data with 
many dimensions and compare ABCD with recent approaches. The results indicate 
that ABCD outperforms its competitors consistently w.r.t. R1–R3, is robust to high-
dimensional data and is useful in domains including human activity recognition, gas 
detection, and image processing. We also study ABCD’s parameter sensitivity. Our 

Table 1  Related work Approach References Type R1 R2 R3

ADWIN Bifet and Gavaldà (2007) UV ✓ – –
SeqDrift2 Pears et al. (2014) UV ✓ – –
kdq-Tree Dasu et al. (2006) MV ✓ – ✓

PCA-CD Qahtan et al. (2015) MV ✓ – ✓

IKS dos Reis et al. (2016) MV ✓ ✓ –
LDD-DSDA Liu et al. (2017) MV ✓ – –
AdwinK Faithfull et al. (2019) MV ✓ ✓ –
D3 Gözüaçık et al. (2019) MV ✓ – ✓

ECHAD Ceci et al. (2020) MV ✓ – ✓

IBDD de Souza et al. (2020) HD ✓ – ✓

WATCH Faber et al. (2021) HD ✓ – ✓

ABCD This work HD ✓ ✓ ✓
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code1 follows the popular Scikit-Multiflow API (Montiel et al. 2018), so it is easy to 
use in future research.

2  Related work

2.1  Change detector types

Most existing change detectors are supervised, i.e., they focus on detecting changes 
in the relationship between input data and a target variable (Iwashita and Papa 2019). 
However, class labels are rarely available in reality, which limits their applicability. 
On the contrary, the  unsupervised change detectors aim to detect changes only in 
the input data. Our approach belongs to this category, so we restrict our review to 
unsupervised approaches.

Most existing approaches detect changes whenever a measure of discrepancy 
between newer observations (the current window) and older observations (the ref-
erence window) exceeds a threshold. Some approaches, e.g., D3  (Gözüaçık et  al. 
2019) or PCA-CD (Qahtan et al. 2015), implement the reference and current win-
dow as two contiguous sliding windows. Other approaches, such as IBDD (de Souza 
et al. 2020), IKS (dos Reis et al. 2016) or WATCH (Faber et al. 2021) use a fixed 
reference window. A major problem is to choose the appropriate size for the win-
dow; thus Bifet and Gavaldà (2007) propose windows of adaptive size, that grow 
while the stream remains unchanged and shrink otherwise. Several work lever-
age this principle, e.g. (Sun et al. 2016; Khamassi et al. 2015; Fouché et al. 2019; 
Suryawanshi et  al. 2022). We also use adaptive windows to lower the number of 
parameters of ABCD.

2.2  Univariate change detection

There exist many approaches for change detection in univariate (UV) data 
streams. Two of them, Adaptive Windowing (ADWIN) (Bifet and Gavaldà 2007) 
and SeqDrift2 (Pears et  al. 2014), share some similarity with our approach. Like 
ADWIN, ABCD relies on an adaptive window. Like SeqDrift2, it uses Bernstein’s 
inequality (Bernstein 1924). But unlike ADWIN and SeqDrift2, ABCD can handle 
high-dimensional data while fulfilling R1-R3.

2.3  Multivariate change detection

To detect changes in multivariate (MV) data, some approaches apply univari-
ate algorithms in each dimension of the stream. Faithfull et al. (2019) propose 
to use one ADWIN detector per dimension (with k dimensions). They declare a 
change whenever a certain fraction of the detectors agree. We call this approach 

1 https:// github. com/ heyma rco/ Adapt iveBe rnste inCha ngeDe tector.

https://github.com/heymarco/AdaptiveBernsteinChangeDetector


1 3

Adaptive Bernstein change detector for high-dimensional…

AdwinK later on. Similarly, IKS (dos Reis et  al. 2016) uses an incremental 
variant of the Kolmogorov–Smirnov test deployed in each dimension. Unlike 
AdwinK, IKS issues an alarm if at least one dimension changes.

There also exist approaches specifically designed for multivariate (Jaworski 
et  al. 2020; Ceci et  al. 2020; Qahtan et  al. 2015; Gözüaçık et  al. 2019; Dasu 
et  al. 2006), or even high-dimensional (HD) data (Faber et  al. 2021; de Souza 
et al. 2020).

Similar to ABCD, Jaworski et  al. (2020) and Ceci et  al. (2020) use dimen-
sionality-reduction methods to capture the relationships between dimensions. 
However, our approach is computationally more efficient, limits the probability 
of false alarms, identifies change subspace, and estimates change severity. D3 
(Gözüaçık et  al. 2019) uses the AUC-ROC score of a discriminative classifier 
that tries to distinguish the data in two sliding windows. It reports a change if 
the AUC-ROC score exceeds a pre-defined threshold. PCA-CD  (Qahtan et  al. 
2015) first maps observations in two windows to fewer dimensions using PCA. 
Then the approach estimates the KL-divergence between both windows for each 
principal component. PCA-CD detects a change if the maximum observed KL-
divergence exceeds a threshold. However, Goldenberg and Webb (2019) point 
out that this technique is limited to linear transformations and ignores combined 
change in multiple dimensions. LDD-DSDA (Liu et  al. 2017) measures the 
degree of local drift that describes regional density changes in the input data. 
The approach proposed by Dasu et al. (2006) structures observations from two 
windows (sliding or fixed) in a kdq-tree. For each node, they measure the KL-
divergence between observations from both windows. However, Qahtan et  al. 
(2015) show experimentally that this approach is not suitable for high-dimen-
sional data.

IBDD  (de  Souza et  al. 2020) and WATCH  (Faber et  al. 2021) specifically 
address challenges arising from high-dimensional data. The former monitors the 
mean squared deviation between two equally sized windows. The latter monitors 
the Wasserstein distance between a reference and a sliding window. However, 
both cannot detect change subspaces or measure severity.

2.4  Offline change point detection

Offline change point detection, also known as signal segmentation, divides time 
series of a given length into K homogeneous segments (Truong et  al. 2020). 
Many of the respective algorithms are not suitable for data streams: Some 
require specifying K a priori (Bai and Perron 2003; Harchaoui and Cappe 2007; 
Lung-Yut-Fong et al. 2015); others (Killick et al. 2012; Lajugie et al. 2014; Mat-
teson and James 2014; Chakar et al. 2017; Garreau and Arlot 2018) scale super-
linearly with time. WATCH (Faber et al. 2021), discussed above, is the state of 
the art extension of offline change point detection to data streams.
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2.5  Change subspace

The notion of a change subspace is different from the existing notion of change 
region (Lu et al. 2019). The former describes a subset of dimensions that changed, 
the latter identifies density changes in some local region, e.g., a hyper-rectangle 
or cluster (Liu et al. 2017). Our definition of change subspaces is related to mar-
ginal change magnitude (Webb et al. 2018), but is more general since it can also 
accomodate changes in a subspace’s joint distribution.

Because high-dimensional spaces are typically sparse (due to the curse of 
dimensionality), identifying density changes in them is not effective. On the other 
hand, knowing that a change affected a specific set of dimensions can help iden-
tify the cause of the change, as we have motivated in our introductory example. 
Thus, we focus on detecting change subspaces in this work.

In the domain of statistical process control, some approaches extend well-
known methods, such as Cusum  (Page 1954) or Shewhart charts  (Shewhart 
1930), to multiple dimensions. They address the problem of identifying change 
subspaces to some extent, however, they often make unrealistic assumptions: they 
focus on Gaussian or sub-Gaussian data (Chaudhuri et al. 2021; Xie et al. 2020), 
require that different dimensions are initially independent (Chaudhuri et  al. 
2021), require subspace changes to be of low rank  (Xie et al. 2020), or assume 
that the size of the change subspace is known a priori (Jiao et al. 2018).

From the approaches reviewed in Sect. 2.3 only AdwinK and IKS identify the 
corresponding change subspace. However, both approaches do not find changes 
that hide in subspaces, e.g., correlation changes, because they monitor each 
dimension in isolation. In contrast, our approach aims to learn the relationships 
between different dimensions so that it can detect such changes. Next, AdwinK 
cannot identify subspaces with fewer than k dimensions.

2.6  Change severity

According to Lu et al. (2019), change severity is a positive measure of the dis-
crepancy between the data observed before and after the change. One can 
either measure the divergence between distributions directly, as done by kdq-
Tree (Dasu et al. 2006), LDD-DSDA (Liu et al. 2017), and WATCH (Faber et al. 
2021), or indirectly with a score that correlates with change severity, as done 
by D3  (Gözüaçık et al. 2019). Following this reasoning, an approach that satis-
fies R3 should compute a score that depends on the change severity (Gözüaçık 
et  al. 2019; Dasu et  al. 2006; de  Souza et  al. 2020; Qahtan et  al. 2015; Faber 
et al. 2021), i.e., the higher the score, the higher the severity. Finally, hypothesis-
testing-based approaches, such as ADWIN (Bifet and Gavaldà 2007), SeqDrift2   
(Pears et al. 2014), AdwinK (Faithfull et al. 2019), or IKS (dos Reis et al. 2016), 
do not quantify change severity: a slight change observed over a longer time can 
lead to the same p-value as a severe change observed over a shorter time, hence p 
is not informative about change severity.
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2.7  Pattern based change detection

A related line of research, pattern-based change detection, deals with identifying 
changes in temporal graphs (Loglisci et al. 2018; Impedovo et al. 2019, 2020a, b). 
In particular, Loglisci et al. (2018) detect changes in the graph, identify the affected 
subgraphs, and quantify the amount of change for these subgraphs. This is similar 
to our methodology. However, these methods work well with graph data, but we are 
dealing with vector data. To apply these methods in our context, one would need to 
create a graph, e.g., by representing each dimension as a node and indicating pair-
wise correlations with edges. However, constructing such a graph becomes impracti-
cal for high-dimensional observations because of the exponentially growing number 
of subspaces.

2.8  Competitors

In our experiments, we compare to AdwinK, IKS, D3, IBDD, and WATCH. IBDD, 
WATCH, and D3 are recent change detectors for multivariate and high-dimensional 
data that fulfill R3. AdwinK extends the ADWIN algorithm to the multivariate case 
and fulfills R2. Finally, IKS is the only approach employing a non-parametric two-
sample test for change detection while also satisfying R2.

3  Preliminaries

We are interested in finding changes in the last t observations S = (x1, x2,… , xt) 
from a stream of data. Each xi is a d-dimensional vector independently drawn from 
a (unknown) distribution Fi . We assume without loss of generality that each vector 
coordinate is bounded in [0, 1], i.e., xi ∈ [0, 1]d.

Definition 1 (Change) A change occurs at time point t∗ if the data-generating distri-
bution changes after t∗ : Ft∗ ≠ Ft∗+1.

In high-dimensional data, changes typically affect only a subset of dimensions, 
which we call the change subspace. Let D = {1, 2,… , d} be the set of dimensions 
and FD′

i
 be the joint distribution of Fi observed in the subspace D′ ⊆ D at time step i. 

We define the change subspace as follows:

Definition 2 (Change subspace) The change subspace D∗ at time t∗ is the union of 
all D′ ⊆ D in which the joint distribution FD′ changed and which does not contain a 
subspace D′′ for which FD��

t∗
≠ FD��

t∗+1
.

If the dimensions in D∗ are uncorrelated, then changes will be visible on the mar-
ginal distributions, i.e., all D′ are of size 1. However, changes may only be detect-
able w.r.t the joint distribution of D∗ or the union of its subspaces of size greater 
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than 1, which our definition accommodates. Note that the definition can also han-
dle multiple co-occurring changes and considers them as one single change. Last, 
change severity measures the difference between FD∗

t∗
 and FD∗

t∗+1
:

Definition 3 (Change severity) The severity of a change is a positive function Δ of 
the mismatch between FD∗

t∗
 and FD∗

t∗+1
.

Since we do not know the true distributions Ft∗ and Ft∗+1 , the best we can do is 
detecting changes and their characteristics based on the observed data.

4  Approach

4.1  Principle of ABCD

Direct comparison of high-dimensional distributions is impractical as it requires 
many samples (Gretton et al. 2012). Yet the number of variables required to describe 
such data with high accuracy is often much smaller than d  (Lee and Verleysen 
2007). Dimensionality reduction techniques let us encode observations in fewer 
dimensions. The more information encodings retain, the better one can reconstruct 
(decode) the original data. However, if the distribution changes, the reconstruction 
will degrade and produce higher errors.

We leverage this principle in ABCD by monitoring the reconstruction loss of 
an encoder-decoder model �◦� for some encoder function � and decoder func-
tion � . Figure  1 illustrates this. Specifically, we first learn � ∶ [0, 1]d → [0, 1]d

� 
with d� = ⌊𝜂d⌋ < d , � ∈ (1∕d, 1) , mapping the data to fewer dimensions, and 
� ∶ [0, 1]d

�

→ [0, 1]d . Then, we monitor the loss between each xt and its reconstruc-
tion x̂t = 𝜓◦𝜙(xt) = 𝜓(𝜙(xt)):

We hypothesize that distribution changes lead to outdated encoder-decoder mod-
els—see for example  (Jaworski et  al. 2020) for empirical evidence. Hence, we 
assume that changes in the reconstruction affect the mean �t∗+1 of the loss, because 
the model can no longer accurately reconstruct the input:

(1)Lt = MSE(xt, x̂t) =
1

d

d∑
j=1

(
xt,j − x̂t,j

)2
=

1

d

d∑
j=1

Lt,j

Fig. 1  Overview of ABCD
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We can now replace the definition of change in high-dimensional data with an eas-
ier-to-evaluate, univariate proxy:

It allows detecting arbitrary changes in the original (high-dimensional) distribution 
as long as they affect the average reconstruction loss of the encoder-decoder. Since 
the true �t∗ and �t∗+1 are unknown, we estimate them from the stream:

4.2  Detecting the change point

ABCD detects a change at t∗ if �̂�1,t∗ differs significantly from �̂�t∗+1,t . To quantify 
this, we derive a test based on Bernstein’s inequality (Bernstein 1924). It is often 
tighter than more general alternatives like Hoeffding’s inequality  (Boucheron 
et al. 2013). Let �̂�1, �̂�2 be the averages of two independent samples from two uni-
variate random variables. One wants to evaluate if both random variables have 
the same expected values: The null hypothesis H0 is �1 = �2 . Based on the two 
samples, one rejects H0 if Pr

(|�̂�1 − �̂�2| ≥ 𝜖
)
≤ 𝛿 where � is a preset significance 

level. The following theorem allows evaluating Eq. (3) based on Bernstein’s 
inequality.

Theorem 1 (Bound on Pr
(|�̂�1 − �̂�2| ≥ 𝜖

)
 ) Given two independent samples X1,X2 of 

size n1 and n2 from two random variables with unknown expected values �1,�2 and 
variances �2

1
, �2

2
 . Let �̂�1, �̂�2 denote the sample means and let |𝜇1 − xi| < M for all 

xi ∈ X1 and |𝜇2 − xi| < M for all xi ∈ X2 respectively. Assuming �1 = �2 , we have:

Proof We follow the same steps as in  Bifet and Gavaldà (2007) and Pears et  al. 
(2014).

Recall Bernstein’s inequality: Let x1,… , xn be independent random variables 
with sample mean �̂� = 1∕n

∑
xi and expected value � s.th. ∀xi ∶ |xi − �| ≤ M . 

Then, for all 𝜖 > 0,

(2)Ft∗ ≠ Ft∗+1 ⟹ �t∗ ≠ �t∗+1

(3)∃t∗ ∈ [1,… , t] ∶ �t∗ ≠ �t∗+1

(4)�̂�1,t∗ =
1

t∗

t∗∑
i=1

Li, �̂�t∗+1,t =
1

t − t∗

t∑
i=t∗+1

Li.

(5)

Pr
���̂�1 − �̂�2� ≥ 𝜖

�
≤

2 exp

⎧⎪⎨⎪⎩
−

n1(𝜅𝜖)
2

2
�
𝜎2
1
+

1

3
𝜅M𝜖

�
⎫⎪⎬⎪⎭
+ 2 exp

⎧⎪⎨⎪⎩
−

n2((1 − 𝜅)𝜖)2

2
�
𝜎2
2
+

1

3
(1 − 𝜅)M𝜖

�
⎫⎪⎬⎪⎭
∈ (0, 4]

∀𝜅 ∈ [0, 1].
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We apply the union bound to Pr
(|�̂�1 − �̂�2| ≥ 𝜖

)
 . For all � ∈ [0, 1] , we have:

Substituting above with Bernstein’s inequality completes the proof.   ◻

With regard to change detection, one can use Eq. (5) to evaluate for a time point 
k if a change occurred. The question is, however, how to choose � to limit the prob-
ability of false alarm at any time t to a maximum �.

Our approach is to set � to the observed |�̂�1,k − �̂�k+1,t| and to set n1 = k , n2 = t − k . 
The result bounds the probability of observing |�̂�1,k − �̂�k+1,t| between two independ-
ent samples of sizes k and t − k under H0 . If this probability is very low, the distribu-
tions must have changed at k. Then, we search for changes at multiple time points 
k in the current window. Hence, we obtain multiple such probability estimates; our 
change score is their minimum:

The corresponding change point t∗ splits (L1, L2,… , Lt) into the two subwindows 
with the statistically most different mean.

4.2.1  Choice of parameter �

The bound in Eq. (5) holds for any � ∈ [0, 1] . A good choice, however, pro-
vides a tighter estimate, resulting in faster change detection for a given rate 
of allowed false alarms � . Bifet and Gavaldà (2007) suggest to choose � s.th. 
Pr(|�̂�1 − 𝜇1| ≥ 𝜅𝜖) ≈ Pr(|�̂�2 − 𝜇2| ≥ (1 − 𝜅)𝜖) , that approximately minimizes the 
upper bound. Substituting both sides with Bernstein’s inequality, we get

Setting n1 = rn2 and simplifying, we have

To solve for � , note that |�̂�1,k − �̂�k+1,t| ≈ 0 for large enough k and t − k while there is 
no change. This leads to a change score p ≫ 𝛿 for any choice of � . Hence, choosing 
� optimal is irrelevant while there is no change.

(6)Pr (��̂� − 𝜇� ≥ 𝜖) ≤ 2 exp

⎧
⎪⎨⎪⎩
−

n𝜖2

2
�
𝜎2 +

1

3
M𝜖

�
⎫⎪⎬⎪⎭
.

(7)Pr
(|�̂�1 − �̂�2| ≥ 𝜖

)
≤ Pr

(|�̂�1 − 𝜇1| ≥ 𝜅𝜖
)
+ Pr

(|�̂�2 − 𝜇2| ≥ (1 − 𝜅)𝜖
)

(8)p = min
k

Pr
(|�̂�1 − �̂�2| ≥ |�̂�1,k − �̂�k+1,t|

)

(9)
n1(��)

2

�2
1
+

�M�

3

=
n2(1 − �)2�2

�2
2
+

(1−�)M�

3

.

(10)
3�2

1
+ �M�

r�2
=

3�2
2
+ (1 − �)M�

(1 − �)2
.
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In contrast, if a change occurs, the change in the model’s loss dominates the var-
iance in both subwindows, leading to M𝜖 ≫ 𝜎2

1
, 𝜎2

2
 . In that case, the influence of 

�2
1
, �2

2
 is negligible for sufficiently large � and 1 − �:

Solving Eq. (11) for � results in our recommendation for � (Eq. (12) which we 
restrict to [�min, 1 − �min] with �min = 0.05.

4.2.2  Minimum sample sizes and outlier sensitivity

This section investigates the conditions under which ABCD detects changes.
We derive a minimum size of the first window above which ABCD detects a 

change. It bases on the fact that the number of observations before an evaluated time 
point k remains fixed while the number of observations after k grows with t. Those 
counts are n1 = k and n2 = t − k in Eq. (5). Also, since we consider bounded ran-
dom variables, their variance is bounded as well. Hence, the second term in Eq. (5) 
approaches 0 for any 𝜖 > 0 . With this, solving Eq. (5) for n1 yields:

By setting 𝜖 = |�̂�1 − �̂�2| we see that the required size of the first window decreases 
the larger the change in the average reconstruction error. For example, with M = 1 , 
� = �1 = 0.1 , and � = 0.05 our approach requires n1 ≥ 32.

Since ABCD detects changes in the average reconstruction loss of a bounded vec-
tor, it is stable with respect to outliers as long as they are reasonably rare. To see 
this, assume w.l.o.g. that window 1 contains nout outliers and that 𝜖 > 0 . One can 
show that the average of the outliers, �̂�out , must exceed the average of the remain-
ing inliers, �̂�in , by n1�∕nout . In the example above, a single outlier would thus have 
to exceed �̂�in by n1� = 3.2 . This, however, is impossible because M = 1 bounds the 
reconstruction loss.

4.3  Detecting the change subspace

After detecting a change, we identify the change subspace. Restricting the encoding 
size to d′ < d forces the model to learn relationships between different input dimen-
sions. As a result, the loss observed for dimension j contains not only information 
about the change in that dimension (i.e., the marginal distribution in j changes), but 
also about correlations influencing dimension j. Hence, we can detect changes in 
the marginal- and joint-distributions by evaluating in which dimensions the loss 
changed the most.

(11)
�M�

r�2
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Algorithm 1 describes how we identify change subspaces. For each dimension 
j, we compute the average reconstruction loss (the squared error in dimension j) 
before and after t∗ , denoted �̂j

1,t∗ , �̂
j
t∗+1,t (lines 5 and 6), and the standard deviation 

�j1,t∗ , �
j
t∗+1,t (lines 6 and 7). We then evaluate Eq. (5), returning an upper 

bound on the p-value in the range (0,  4] for dimension j (line  9). If 
pj < 𝜏 ∈ [0, 4] , an external parameter for which we give a recommendation later 
on, we add j to the change subspace (lines 10 and 11).

Algorithm 1  Identification of change subspaces.

4.4  Quantifying change severity

ABCD provides a measure of change severity in the affected subspace, based 
on the assumption that the loss in the change subspace increases with severity. 
Hence, we compute the average reconstruction loss observed in D∗ before and 
after the change,

and the standard deviation observed before the change:

We then standard-normalize the average reconstruction loss �̂�D∗

t∗+1
 observed after the 

change:

(14)�̂�D∗

1,t∗
=

1

|D∗|t∗
t∗∑
i=1

∑
j∈D∗

Li,j, �̂�D∗

t∗+1,t
=

1

|D∗|(t − t∗)

t∑
i=t∗+1

∑
j∈D∗

Li,j

(15)𝜎D∗

1,t∗
=

√√√√ 1

t∗

t∗∑
i=1

(
�̂�D∗

i
− �̂�D∗

1,t∗

)2

with �̂�D∗

i
=

1

|D∗|
∑
j∈D∗

Li,j
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Intuitively, Δ is the standard deviation of model’s loss on the new distribution.

4.5  Working with windows

In comparison to most approaches, ABCD evaluates multiple possible change points 
within an adaptive time interval [1,… , t] . This frees the user from choosing the win-
dow size a-priori and allows to detect changes at variable time scales. Next, we dis-
cuss how to efficiently evaluate those time points.

4.5.1  Maintaining loss statistics online

To avoid recomputing average reconstruction loss values and their variance for mul-
tiple time points every time new observations arrive, we store Welford aggregates 
A1,k summarizing the stream in the interval [1,… , k] . Each aggregate A1,k is a tuple 
containing the average reconstruction loss �̂�1,k and the sum of squared differences 
ssd1,k = k−1

∑k

j=1
Lj . We store these aggregates for the time interval [1,… , t].

Creating a new aggregate Every time a new observation with loss Lt arrives, we 
create a new aggregate based on the previous aggregate A1,t−1 = (�̂�1,t−1, ssd1,t−1) in 
O(1) using Welford’s algorithm (Knuth 1997):

Computing the statistics Two aggregates A1,k and A1,t , t > k overlap in 
the time interval [1,… , k] . We leverage this overlap to derive an aggregate 
Ak+1,t = (�̂�k+1,t, ssdk+1,t) representing the time interval [k + 1,… , t] . Equations (19) 
and (20) are based on Chan’s method for combining variance estimates of non-over-
lapping samples (Chan et al. 1982).

From ssd1,k and ssdk+1,t we can compute the sample variances as follows:

(16)Δ =

|||�̂�D∗

t∗+1,t
− �̂�D∗

1,t∗
|||

𝜎D∗

1,t∗

∈ ℝ
+

(17)�̂�1,t =�̂�1,t−1 +
1

t
(Lt − �̂�1,t−1)

(18)ssd1,t =ssd1,t−1 +
(
Lt − �̂�1,t−1

)(
Lt − �̂�1,t

)

(19)�̂�k+1,t =
1

t − k
(t�̂�1,t − k�̂�1,k)

(20)ssdk+1,t =ssd1,t − ssd1,k −
k(t − k)

t

(
�̂�1,k − �̂�k+1,t

)2

(21)�2
1,k

=
ssd1,k

k − 1
, �2

k+1,t
=

ssdk+1,t

t − k − 1
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Derivation Given two non-overlapping samples A = {x1,… , xm} and 
B = {x1,… , xn} of a real random variable. Let TA =

∑m

i=1
xi and TB =

∑n

i=1
xi be the 

sums of the samples and ssdA =
∑m

i=1
(xi − m−1TA)

2 and ssdB =
∑n

i=1
(xi − n−1TB)

2 be 
the sums of squared distances from the mean.

For the union of both sets AB = A ∪ B we have TAB = TA + TB , which is equiva-
lent to (m + n)�̂�AB = m�̂�A + n�̂�B . Solving for �̂�B gives

Substituting n = t − k , m = k , 𝜇A = �̂�1,k , 𝜇B = �̂�k+1,t , and �̂�1,t = �̂�AB gives Eq. (19); 
next we derive Eq. (20). Chan et al. (1982) state:

which is equivalent to

Solving for ssdB , applying the former substitutions, and setting ssdA = ssd1,k , 
ssdB = ssdk+1,t , and ssd1,t = ssdAB results in Eq. (20).

4.6  Implementation

Algorithm
One can implement ABCD as a recursive algorithm, see Algorithm  2, which 

restarts every time a change occurs. We keep a data structure W that contains the 
aggregates, instances, and reconstructions. W can either be empty, or, in the case of 
a recursive execution, already contain data from the previous run.

Prior to execution, our algorithm must first obtain a model of the current data 
from an initial sample of size nmin . If necessary, ABCD allows enough instances 
to arrive (lines 5–7). Larger choices of nmin allow for better approximations of the 
current distribution but delay change detection. Hence our recommendation is to set 
nmin as small as possible to still learn the current distribution; a default of nmin = 100 
has worked well for us.

Afterwards, the algorithm trains the model using the instances in W (lines 8–9). 
ABCD can in principle work with various encoder-decoder models; thus we deal 
with tuning the model only on a high level. Nonetheless, we give recommendations 
in our sensitivity study later on.

After model training, ABCD detects changes. It reconstructs each new 
observation xt+1 (line 11), creates a new aggregate A1,t+1 (line 12), and adds 
wt+1 ∶= (A1,t+1, x̂t+1, xt+1) to W (lines 13–14). Our approach then computes change 
score p and change point t∗ (lines 15–16). If p < 𝛿 , it detects a change.

(22)𝜇B =
m + n

n
�̂�AB −

m

n
𝜇A.

(23)ssdAB = ssdA + ssdB +
m

n(m + n)

(
n

m
TA − TB

)2

,

(24)
ssdAB = ssdA + ssdB +

m

n(m + n)

(
n
(
1

m
TA −

1

n
TB

)

�����������������
=𝜇A−𝜇B

)2

.
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Once ABCD detects a change, it identifies the corresponding subspace and evalu-
ates its severity (lines 21–22). Then it adapts W by dropping the outdated part of the 
window (line 23), including all information obtained with the outdated model. At 
last, we restart ABCD with the adapted window (line 24).

Algorithm 2  Adaptive Bernstein Change Detector (ABCD)

Discussion
In the worst case our approach consumes linear time and memory because W 

grows linearly with t. However, we can simply restrict the size of W to nmax items 
for constant memory or evaluate only kmax window splits for constant runtime. In 
the latter case we split W at every t∕kmax th time point. Regarding nmax , it is benefi-
cial that the remaining aggregates still contain information about all observations in 
(1,… , t) . Hence, ABCD considers the entire past since the last change even though 
one restricts the size of W.

ABCD can work with any encoder-decoder model, such as deep neural networks. 
However, handling a high influx of new observations faster than the model’s pro-
cessing capability can be challenging. Assuming that �◦� ∈ O(g(d)) for some func-
tion g of dimensionality d, the processing time of a single instance during serial 
execution is in O

(
g(d) + kmax

)
 . Nevertheless, both the deep architecture components 

and the computation of the change score (cf. Eq. 8) can be executed in parallel using 
specialized hardware.
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Dimensionality reduction techniques are often already present in data stream 
mining pipelines, for example as a preprocessing step to improve the accuracy of 
a classifier  (Yan et  al. 2006). Reusing an existing dimensionality reduction model 
makes it is easy to integrate ABCD into an existing pipeline.

Bernstein’s inequality holds for zero-centered bounded random variables that take 
absolute values of at maximum M almost surely. While M = 1 serves as a theoretical 
upper limit of the zero-centered reconstruction error Lt − �[Lt] for xt ∈ [0, 1]d , we 
observe that this theoretical limit is very conservative in practice (cf. “Reconstruc-
tion loss over time” section in “Appendix”). In fact, observing an error of 1 corre-
sponds to an instance and reconstruction of x = [0]d and x̂ = [1]d . This leads us to 
use M = 0.1 in our experiments.

5  Experiments

This section describes our experiments and results. We first describe the experi-
mental setting (Sect.  5.1). Then we analyze ABCD’s change detection perfor-
mance (Sect. 5.3), its ability to find change subspaces and quantify change severity 
(Sect. 5.4), and its parameter sensitivity (Sect. 5.5).

5.1  Algorithms

We evaluate ABCD with different encoder-decoder models: (1) Principal Compo-
nent Analysis (PCA) ( d� = �d ), (2) Kernel-PCA ( d� = �d , RBF-kernel), and (3) a 
standard fully-connected autoencoder model with one hidden ReLU layer ( d� = �d ) 
and an output layer with sigmoid activation. For (1) and (2), we rely on the default 
scikit-learn implementations. We implement the autoencoder (3) in pytorch and 
train it through gradient descent using E epochs and an Adam optimizer with default 
parameters according to Kingma and Ba (2015); see “Training of autoencoder” sec-
tion in “Appendix” for pseudocode of the autoencoder training procedure.

We compare ABCD with AdwinK, IKS, IBDD, WATCH, and D3 (c.f. Section 2). 
We evaluate for each approach a large grid of parameters, shown in Table 2. When-
ever possible, the evaluated grids of hyperparameters for competitors base on rec-
ommendations in respective papers. Otherwise, we choose them based on prelimi-
nary experiments. For ABCD, we evaluate larger and smaller values for � , � and E 
to observe our approach’s sensitivity to those parameters. The choice of � = 2.5 is 
our recommended default based on our sensitivity study in Sect. 5.5. Last, we set 
nmin = 100 and kmax = 20 , minimum values that have worked well in preliminary 
experiments.
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5.2  Datasets

There are not many public benchmark data streams for change detection. Thus we 
generate our own from seven real-world (rw) and synthetic (syn) classification data-
sets, similar to Faber et al. (2021) and Faithfull et al. (2019). We simulate chang-
ing data streams2 by sorting the data by label, unless stated otherwise. If the label 
changes, a change has occurred. In real-world data streams, the number of obser-
vations between changes depends on each dataset, reported below. In the synthetic 
streams, we introduce changes every 2000 observations, which is a relatively large 
interval, to assess whether some approaches generate many false alarms. The gen-
erators base on the following datasets:

• HAR (rw) The dataset Human Activity Recognition with Smartphones (Anguita 
et al. 2013) ( d = 561 ) bases on smartphone accelerometer and gyroscope read-

Table 2  Evaluated approaches 
and their parameters

*Used or recommended in the respective papers
†Only relevant for autoencoders
‡Authors did not recommend parameters for their approach

Algorithm Parameter Values

ABCD model PCA, Kernel PCA, Autoencoders
� 0.05
� 0, 3, 0.5, 0.7
E
† 20, 50, 100

n
min

;k
max

;� 100; 20; 2.5
AdwinK k 0.01∗, 0.05∗, 0.1∗, 0.2∗, 0.3∗, 0.4∗, 0.5∗

� 0.05
D3 � 100∗, 250∗, 500∗

� 0.1∗, 0.2∗, 0.3∗, 0.4∗, 0.5∗

� 0.6∗, 0.7∗, 0.8∗, 0.9∗

model Logistic Regression*, Decision Tree
tree depth 1, 3, 5

IBDD � 100, 200, 300
m 10, 20, 50, 100

IKS W 100∗, 200, 500∗

� 0.05
WATCH

‡ � 500, 1000
� 100
� 2, 3
� 1000, 2000

2 Available at https:// github. com/ heyma rco/ Adapt iveBe rnste inCha ngeDe tector.

https://github.com/heymarco/AdaptiveBernsteinChangeDetector
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ings for different actions a person performs. A change occurs on average every 
1768 observations.

• GAS (rw) This data set  (Vergara et al. 2011) ( d = 128 ) contains data from 16 
sensors exposed to 6 gases at various concentrations. A change occurs on aver-
age every 2265 observations.

• LED (syn) The LED generator samples instances representing a digit on a seven 
segment display. It contains 17 additional random dimensions. We add changes 
by varying the probability of bit-flipping in the relevant dimensions.

• RBF (syn) The RBF generator (Bifet et al. 2010) starts by drawing a fixed num-
ber of centroids. For each new instance, the generator chooses a centroid at ran-
dom and adds Gaussian noise. To create changes, we increment the seed of the 
generator resulting in different centroids. We then use samples from the new 
generator in a subspace of random size.

• MNIST, FMNIST, and CIFAR (syn) Those data generators sample from 
the image recognition datasets MNIST  (LeCun et  al. 1998), Fashion MNIST 
(FMNIST)  (Xiao et  al. 2017) ( d = 784) , and CIFAR  (Krizhevsky et  al. 2009) 
( d = 1024 , grayscale).

Changes can occur rapidly (“abrupt” or “sudden”) or in time intervals (“gradual” 
or “incremental”). The shorter the interval, the more sudden the change. We vary 
the interval size between 1 and 300 unless stated otherwise. Real-world and image 
data do not have a ground truth for change subspaces and severity. Thus we generate 
three additional data streams:

• HSphere (syn) This generator draws from a d∗-dimensional hypersphere bound 
to [0,  1] and adds d − d∗ random dimensions. We vary the radius and center 
of the hypersphere to introduce changes. The change subspace contains those 
dimensions that define the hypersphere.

• Normal-M/V (syn) These generators sample from a d∗-dimensional normal dis-
tribution and add d − d∗ random dimensions. For type M, changes affect the dis-
tribution’s mean, for V we change the distribution’s variance.

5.3  Change point detection

We use precision, recall, and F1-score to evaluate the performance of the approaches 
at detecting changes. We define true positives (TP), false positives (FP) and false 
negatives (FN) as follows:

• TP A change was detected before the next change.
• FN A change was not detected before the next change.
• FP A change was detected although no change occurred.

Also, we report the mean time until detection (MTD) indicating the average number 
of instances until a change is detected.



1 3

Adaptive Bernstein change detector for high-dimensional…

Figure 2 shows F1-score, precision, recall, and MTD for all datasets and algo-
rithm, as well as a column “Average” that summarizes across datasets. Each box 
contains the results for the grid of hyperparameters shown in Table 2. We see that 
our approach outperforms its competitors w.r.t. F1-score and precision. It also is 
competitive in terms of recall, though it loses against IKS, IBDD, and WATCH. 
These approaches seem overly sensitive. The results also indicate that ABCD works 
well for a wide range of hyperparameters. One reason is that ABCD uses adaptive 
windows, thereby eliminating the effect of a window size parameter (demonstrated 
in Sect. 5.6). Another reason is that ABCD detects changes in reconstruction loss 
irrespective of the actual quality of the reconstructions. For instance, Kernel PCA 
and PCA produce reconstructions of different accuracy in our experiments. How-
ever, for both models, the average accuracy changes when the stream changes, which 

Fig. 2  Change point detection: results for different algorithms and datasets; each box contains the results 
for the evaluated grid of parameters

Table 3  Results of approaches 
with their best hyperparameter 
configuration w.r.t. F1 score 
averaged over all data sets

Approach F1 Prec Rec MTD

ABCD (ae) 0.90 0.96 0.87 250
ABCD (kpca) 0.88 0.95 0.84 312
ABCD (pca) 0.73 0.93 0.65 442
AdwinK 0.46 0.48 0.57 400
D3 0.70 0.63 0.82 251
IBDD 0.45 0.30 0.97 396
IKS 0.08 0.04 0.43 24
WATCH 0.69 0.54 1.00 626
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is what our algorithm detects. Refer to “Reconstruction loss over time” section 
“Appendix” for an illustration of the models’ reconstruction loss over time. Hence, 
our reported results do not yield information about the actual accuracy of the under-
lying encoder-decoder models.

ABCD has a higher MTD than D3, IBDD, and IKS, i.e., it requires more data to 
detect changes. However, those competitors are much less conservative and detect 
many more changes than exist in the data. Hence they have low precision but high 
recall—this leads to a lower MTD.

Table  3 reports the results of all approaches with their best hyperparameters. 
WATCH and D3 achieve relatively high F1-score and precision. In fact, those 
approaches are our strongest competitors although we still outperform them by at 
least 3 %. Further, WATCH has an MTD of 626, which is more than ABCD while 
D3 and ABCD have a comparable MTD.

ABCD has much higher precision than its competitors. We assume this is because 
ABCD (1) leverages the relationships between dimensions, in comparison to 
AdwinK, IKS, or IBDD, and (2) learns those relationships more effectively than, 
say, D3 or WATCH. For example, we observed in our experiments that WATCH 
was frequently unable to accurately approximate the Wasserstein distance in high-
dimensional data.

ABCD has lower recall than most competitors, partly due to their over-sensitivity. 
In this regard, our approach might benefit from application-specific encoder-decoder 
models that leverage structure in the data, such as spacial relationships between the 
pixels of an image, more effectively.

5.4  Change subspace and severity

We now evaluate change subspace identification and change severity estimation. 
We set d = {24, 100, 500} and vary the change subspace size d∗ randomly in [1, d] 
(except for LED, here the subspace always contains dimensions 1–7). We set the 
ground truth for the severity to the absolute difference between the parameters 

Fig. 3  Results for evaluating change subspace and severity
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that define the concepts, e.g., the hypersphere-radius in HAR before and after the 
change. We report an approach’s subspace detection accuracy (SAcc.), where true 
positives (true negatives) represent those dimensions that were correctly classified 
as being member (not being member) of the change subspace. We use Spearman’s 
correlation between the detected severity and the ground truth. We also report the 
F1-score for detecting change points.

Figure 3 shows our results. As before, each box summarizes the results for the 
grid of evaluated hyperparameters.

Comparing the two approaches, AdwinK and IKS, that monitor each dimension 
separately, we see that the former can only detect changes that affect the mean of 
the marginal distributions (i.e., on Norm-M, LED). At the same time, the latter can 
also detect other changes (e.g., changes in variance). This is expected since AdwinK 
compares the mean in two windows while IKS compares the empirical distributions.

Regarding subspace detection, our approach achieves an accuracy of 0.72 for 
PCA, 0.78 for autoencoders, and 0.79 for Kernel PCA. AdwinK performs similarly 
well when changes affect the mean of the marginal distributions. Except on LED, 
IKS performs worse than ABCD and AdwinK, presumbably because IKS issues an 
alarm as soon as a single dimension changed.

The estimates of our approach correlate more strongly with the ground truth than 
those of competitors, with an average of 0.31 for PCA, 0.36 for Kernel PCA and 
0.37 for Autoencoders. However, we expect more specialized models to better than 
our tested models. On LED, PCA-based models appear to struggle to separate pat-
terns from noise, resulting in poor noise level estimates and low correlation scores.

5.5  Parameter sensitivity of ABCD

Sensitivity to �
Figure 4a plots F1 for different datasets over � . We observe that the size of the 

bottleneck does not significantly impact the change detection performance of 
ABCD  (ae) and ABCD  (kpca). For PCA, however, too large bottlenecks seem to 
inhibit change detection on CIFAR, Gas, and MNIST. For those datasets, we assume 
that the change occurs along the retained main components, rendering it undetect-
able; see “Detectable and undetectable change for ABCD (pca)” section “Appendix” 
for an illustration. Figure 4b shows the subspace detection accuracy and Spearman’s 
� . The influence of � on both metrics is low. As mentioned earlier, we assume that 
a change in reconstruction loss, rather than the quality of reconstruction itself, is 
crucial for ABCD. An exception is the LED dataset, on which PCA and Kernel-PCA 
are unable to provide a measure that positively correlates with change severity. We 
hypothesize that those methods struggle to separate patterns from noise, resulting in 
poor noise level estimates and low correlation scores.

Sensitivity to E
Fig. 4c plots our approach’s performance for different choices of E. Overall, our 

approach seems to be robust to the choice of E. On LED, however, larger choices of 
E lead to substantial improvements in F1-score. The reason may be that the autoen-
coder does not converge to a proper representation of the data for small E. To avoid 
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this, we recommend choosing E ≥ 50 and to increase the value if one observes that 
the model has not yet converged sufficiently.

Sensitivity to �
Fig.  4d investigates how the choice of � affects the performance of ABCD at 

detecting subspaces. Since the change score in Eq. (5) provides an upper bound on 
the probability that a change occurred, the function can return values greater than 1, 
i.e,. in the range (0, 4]. Hence we vary � in that range and record the obtained sub-
space detection accuracy. For all approaches we achieve optimal accuracy at � ≈ 2.5 . 
This is probably because some dimensions could change more severely than others, 

Fig. 4  Sensitivity of our approach to its hyperparameters
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resulting in variations of the change scores observed in the different dimensions of 
the change subspace. Based on our findings we recommend � = 2.5 as default.

5.6  Ablation study on window types

Next, we investigate the effect of different window types on change detection per-
formance. We evaluate those commonly found in change detection literature (and in 
our competitors) and couple them with encoder-decoder models and the probabil-
ity bound in Eq. (5). In particular, we compare: (1) Adaptive windows (AW), as in 
ADWIN, AdwinK, and our approach, (2) fixed reference windows (RW), as in IKS, 
(3) sliding windows (SW), as in WATCH, and (4) jumping windows (JW), as in D3. 
The latter “jump” every �|W| instances.

We evaluate the hyperparameters mentioned in Table  2. For example, because 
D3 uses jumping windows, we include the evaluated hyperparameters for D3 in our 
evaluation of jumping windows. In addition, we extend the grid with other reason-
able choices since we already preselected those in Table 2 for our competitors in a 
preliminary study. For ABCD we use � = 0.5 and E = 50.

Table  4 reports the average over all hyperparameter combinations. AWs yield 
higher F1-score and recall than other techniques, while precision remains high 
( ≥ 0.95 ). SWs have a lower MTD than AWs and hence seem to require a fewer 
instances until they detect a change. This is expected: in contrast to sliding windows, 
adaptive windows allow the detection of even slight changes after a longer period of 
time, resulting in both higher MTD and recall.

Table 4  Ablation: using 
encoder-decoder models with 
different window types

Model Window F1 Prec Rec MTD

AE AW 0.83 0.95 0.78 455.6
RW 0.53 1.00 0.21 403.6
SW 0.62 1.00 0.40 207.2
JW 0.52 0.79 0.46 239.1

KPCA AW 0.83 0.99 0.75 309.0
RW 0.56 1.00 0.23 456.3
SW 0.68 1.00 0.49 202.8
JW 0.50 0.77 0.33 266.2

PCA AW 0.72 0.98 0.55 355.3
RW 0.36 1.00 0.09 400.0
SW 0.53 1.00 0.33 206.7
JW 0.46 0.75 0.20 239.9
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Fig. 5  Runtime analysis of ABCD

Fig. 6  Illustration of detectable and undetectable change using PCA
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5.7  Runtime analysis

5.7.1  Comparison with competitors

Figure  5a shows the mean time per observation (MTPO) of ABCD and its com-
petitors for d ∈ {10, 100, 1000, 10, 000} running single-threaded. The results are 
averaged over all evaluated parameters (Table 2). ABCD (id) replaces the encoder-
decoder model with the identity which does not cause overhead. This allows measur-
ing how much the encoder-decoder model influences ABCD’s runtime. The results 
confirm that the runtime of ABCD alone, i.e, without the encoding-decoding-pro-
cess, remains unaffected by a stream’s dimensionality.

We observe that our approach is able to process around 10,000 observations per 
second for d ≤ 100 . This is more than IKS, WATCH and AdwinK (except at d = 10 ) 
but slower than D3 and IBDD. The reason is that our approach evaluates kmax pos-
sible change points in each time step. In high-dimensional data, our competitors’ 
MTPO grows faster than ABCD with PCA or KPCA; in fact, ABCD (pca) is sec-
ond fastest after D3 for d ≥ 1000 . An exception is WATCH at d = 10000 . This is 
due to an iteration cap for approximating the Wasserstein distance restricting the 
approach’s MTPO.

5.7.2  Runtime depending on window size

Next, we investigate ABCD’s runtime for different choices of kmax and � . We run this 
experiment on a single CPU thread. For all three evaluated models, the encoding-
decoding of an observation has a time complexity of O(�d2) ; hence, ABCD’s pro-
cessing time of one instance is in O(�d2 + kmax) . We therefore expect a quadratic 
increase in execution time with dimensionality and a linear increase with � and kmax 
when running on a single core.

The results in Fig. 5b show the influence of kmax on the execution time: kmax effec-
tively restricts the MTPO as soon as |W| = kmax . Afterwards, MTPO remains unaf-
fected by |W| . This also confirms that one can evaluate different possible change 
points in constant time using the proposed aggregates.

We show the runtime for different choices of bottleneck-size � in Fig. 5c. � has 
little influence on the runtime of ABCD with PCA and Kernel-PCA. However, cou-
pled with an autoencoder (implemented in pytorch) we observe the expected linear 
increase in execution time from 0.1 ms for � = 0.3 to 0.3 ms for � = 0.7 . Consider-
ing that change detection performance has shown to remain stable even for smaller 
choices of � , we recommend � ≤ 0.5 as default.

6  Conclusion

We presented a change detector for high-dimensional data streams, called ABCD, 
that monitors the reconstruction loss of an encoder-decoder-model in an adap-
tive window with a change score based on Bernstein’s inequality. Our approach 
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identifies changes and change subspaces, and provides a severity measure that corre-
lates with the ground truth. Since encoder-decoder models are already used in many 
domains (Rani et al. 2022), our approach is widely applicable. In the future, it would 
thus be interesting to test ABCD with application or data specific encoder-decoder 
models. For example, one might observe even better performance on streams of 
image data when applying convolutional autoencoders. Last, ABCD could also ben-
efit from a theoretical analysis of the relationship between changes in data distribu-
tion and the loss of different encoder-decoder models.

Appendix

Training of autoencoder

Algorithm 3 describes the training of the autoencoder model as done in our experi-
ments. First, we collect the training data from the current window W (line 2). After-
wards we perform gradient descent on Xtrain for E epochs at a learning rate of lr.

Algorithm 3  Autoencoder training

Detectable and undetectable change for ABCD (pca)

This section illustrates under which conditions one can use principal component 
analysis to detect change. Figure 6 shows data from two distributions: black points 
(e.g., before the change) plus the associated main principle component, and blue 
points (e.g., after the change). On the left, the change affects the correlation between 
Dim. 1 and Dim. 2. This leads to an increased reconstruction error for the points 
highlighted in blue. On the right, the change occurs along the main principle com-
ponent. I.e., the variance along the main principle component has increased. Such 
kind of change is undetectable by ABCD (pca) as the reconstruction error remains 
unchanged.
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Reconstruction loss over time

Figure  7 shows the reconstruction loss of the evaluated encoder-decoder mod-
els over the length of the stream. We observe that indeed the reconstruction loss 
decreases with increasing bottleneck size (controlled by � ), and with increasing 
number of training epochs E (first three columns). Further, we see that regard-
less of E, � , or the type of model, the reconstruction loss typically changes after 
a change point. After the change was detected, ABCD learns the new concept, 
which mostly leads to a decrease in reconstruction loss. Last, we observe that the 
theoretical limit of M = 1 for the absolute difference between the reconstruction 
loss and its expected value is overly conservative. A value of M = 0.1 seems to be 
a more realistic choice.

Fig. 7  Reconstruction loss over the length of the stream
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